Diffraction Corrections

Much of this section is a rewrite or condensation of extensive information in notebook <u>5090</u>: 48 ff. We give little text, so the presentation is somewhat rough, to keep its size down.

Sound pattern depends upon a/λ , z/λ , or a/λ , z. In our system <u>a</u> is fixed, λ ranges over 4 discrete values corresponding to the 4 frequencies, and z varies continuously from $\simeq 0.6a$ to 7a. Compute average sound pressure on the lower rod face $\langle P \rangle_{av}$:

From A. O. Williams, Jr., J. Acous. Soc. Am. <u>23</u>,1(1951), omitting many steps:

$$\langle \Psi(z) \rangle_{av} = \frac{2 \frac{13}{a}}{a} \int_0^\infty ds u^{-1} e^{-sz} \frac{J_1^2(sa)}{sa}$$

and using integral representations of the Bessel functions

$$=\frac{410}{\pi i k}\int_{0}^{\pi/2} d\theta \sin^{2}\theta \left[e^{-ikz}-e^{-ik(z^{2}+4a^{2}\cos^{2}\theta)^{\frac{1}{2}}}\right]$$

which reduces to Bass' final expression for $\langle P(z) \rangle_{av}$ by multiplying by $i\omega\rho_0$. Our interest is in the ratio <u>R</u> of $\langle P(z) \rangle_{av}$ to the perfect plane wave pressure $\langle P_0(z) \rangle_{av} = \rho \beta_{\omega} e^{-ikz}/k$,

$$R = 1 - \frac{4}{\pi} \int_{0}^{\pi} e^{-ik \left[(z^{2} + 4a^{2} \cos^{2} \theta)^{\frac{1}{2}} - z \right]} \sin^{2} \theta d\theta$$

$$\equiv 1 - I.$$

<u>I</u> has no closed form. Williams expands the integrand in powers of $\cos\theta$, changes variables, and gets an analytic form good for $(4ka)/(z/a)^5 << 2\pi$ and $(ka^4)/z^3 <<1$. We want to treat $z/a \ge 0.6$ and ka = 230-700, while Williams' expression does not converge at the lower range of z/a.

Bass changes variables:

$$\begin{split} \mathbf{S} &= \frac{k}{2} \left[(z^{2} + 4a^{2})^{\frac{1}{2}} - z \right] \\ &= \left[(z^{2} + 4a^{2} \cos^{2} \theta)^{\frac{1}{2}} - z \right] / \left[(z^{2} + 4a^{2})^{\frac{1}{2}} - z \right] \\ &\mathbf{I} \to \frac{2}{24} \int_{0}^{1} \left[1 - \mathbf{x} (1 - 2u) \right] \left[\frac{1 + \mathbf{x}u}{1 + \mathbf{x}u - \mathbf{x}} \right]^{\frac{1}{2}} \left[\frac{1 - u}{u} \right]^{\frac{1}{2}} e^{-2i\mathbf{x}u} du, \\ &\text{where for compactness } \mathbf{x} = (\mathbf{x})^{\frac{1}{2}} du. \end{split}$$

Now, integrals $\underline{I}_n = \int_0^1 du e^{-2i \int u} u^n (\frac{1-u}{u})^{\frac{1}{2}}$ can be expressed in terms of a few Bessel functions, as by identifying the integral with a confluent hypergeometric function

(M. Abramowitz and I. Stegun, <u>Handbook of Mathematical</u> <u>Functions</u>, N.B.S., Washington, D.C., 1964; p. 505). Also Bass implies

$$I_{o} = \frac{\pi}{2} [J_{o}(\xi) + iJ_{1}(\xi)] e^{-i\xi}.$$

Using $I_n = \frac{i}{2} \frac{d}{d\xi} I_{n-1}$ and the J_n recursion relations to reduce all Bessel functions to J_0 , J_1 , we find

$$I_{1} = \frac{i\pi}{4\xi} J_{1} e^{-i\xi} \text{ (argument of J implicitly })$$

$$I_{2} = \frac{i\pi}{8\xi^{2}} e^{-i\xi} [\xi J_{0} - (2+i\xi) J_{1}]$$

$$I_{3} = \frac{\pi}{16\xi^{3}} e^{-i\xi} [(3\xi+2i\xi^{2}) J_{0} - (6+4i\xi-2\xi^{2}) J_{1}]$$

$$I_{4} = \frac{i\pi}{32\xi^{4}} e^{-i\xi} [(-12\xi-9i\xi^{2}+4\xi^{3}) J_{0} + (24+18i\xi-11\xi^{2} - 4i\xi^{3}) J_{1}].$$

We still have to expand the factor in the integrand

$$f(u) = \left[\frac{1+\alpha u}{1+\alpha u-\alpha}\right]^{\frac{1}{2}}$$

in polynomial form. Bass expands about u = 0, but this won't converge for small z/a (large α). Instead we expanded about $u = \frac{1}{2}$ arbitrarily and gathered powers of u. Terms to u^3 adequately represented f(u) in the important range z/a20.5 for u in the range 0,1:

$$f(u) \simeq \sum_{n=0}^{3} \frac{f^{(n)}(\frac{1}{2})}{n!} (u-\frac{1}{2})^{n}$$

= A' + B'u + C'u² +D'u³.

Total integrand:

$$g(u) = \left[1 + x(1-2u)\right] f(u) \simeq \sum_{n=0}^{4} c_n u^n$$

$$I = \frac{2}{\pi} \int_0^1 dug(u) \left(\frac{1-u}{u}\right)^{\frac{1}{2}} e^{-2i t \cdot u}$$

$$\approx \frac{2}{\pi} \sum_{n=0}^{4} c_n \int_0^1 du \ u^n \left(\frac{1-u}{u}\right)^{\frac{1}{2}} e^{-2i t \cdot u}$$

$$= \frac{2}{\pi} \sum_{n=0}^{4} c_n I_n .$$

Gathering terms in $\}^n$:

$$R = 1-I$$

$$= 1-2e^{-i\frac{1}{2}} \left[\frac{J_0}{3} (-i\frac{3}{8}c_4 + \frac{9}{32}c_4 + \frac{3}{16}c_3) + \frac{i}{8} \{c_4 + c_3 + c_2\} \right]^2$$

$$+ \frac{c_0}{2} 3$$

$$+ \frac{J_1}{4} (i\frac{3}{4}c_4 - \frac{9}{16}c_4 + \frac{3}{8}c_3) + \frac{i}{32} \{11c_4 + 8c_3 + \frac{1}{4}c_4 + \frac{1}{8}c_4 + \frac{1}{8}c_4 + \frac{1}{8}c_4 + \frac{1}{8}c_5 + \frac{1}{8}c_5 + \frac{1}{2}c_5 + \frac{1}{8}c_5 + \frac{1}{8}c_5 + \frac{1}{2}c_5 + \frac{1}{2}$$

where

and

$$c_0 = (1 - \kappa)A^{\dagger} / c_1 = 2\kappa A^{\dagger} + (1 - \kappa)B^{\dagger} / c_2 = 2\kappa B^{\dagger} + (1 - \kappa)C^{\dagger}$$

 $c_3 = 2\kappa C^{\dagger} + (1 - \kappa)D^{\dagger} / c_4 = 2\kappa D^{\dagger}$

and

.

A' = A
$$-\frac{1}{2}B + \frac{1}{4}C - D/8$$

B' = B - C + $\frac{3}{4}D$
C' = C - $\frac{3}{2}D$
D' = D

and

A =b/c B =
$$-\alpha^2/2bc^3$$
 C $\frac{-\alpha^3(4+\alpha)}{8b^3c^5}$
D = $\frac{\alpha^4(4+2\alpha+\alpha^2)}{8b^5c^7}$

and

 $x=y^2/(ka)^2$; $y = \frac{k}{2}[(z^2+4a^2)^{\frac{1}{2}}-z]$; z,k,a are given in the dimensions of the problem.

The complex response ratio \underline{R} is converted to an effective db loss \underline{Q} ,

$$|\mathbf{R}| = e^{-Q/8.686} \rightarrow Q = 8.686 \ln |\mathbf{R}|.$$

Q was computed for my system for $\underline{a} = 12.7$ mm. (fixed), for four frequencies f = 4.5, 7.5, 10.5, and 13.5 MHz. (for 4 values of propagation constant \underline{k} , that is), and in turn for a grid of heights \underline{z} (hence for \mathbf{i} or \mathbf{k}) from about 8 to 66 mm. in steps of 2 mm. (and later out to 80 mm.). Several sound velocities were tried without changing the results noticeably, so we settled on a standard 13 of 1570 m./sec. The FORTRAN computer program to do the work is listed in the pages stapled in notebook 5090: 52. Its input consists of: the number of classes of velocity (and absorption -- explained later), and labels; number of frequencies and the f_i ; <u>a</u> and **\boldsymbol{\beta}**; the grid of z_1 ; absorption $\boldsymbol{\alpha}$; and print option param-It is extensively commented and easy to use. 0ur eters. results in Table IV check with Bass' for larger z/a. The apparent loss factor \underline{Q} was monotonic for all \underline{f} in my range of z, even at every low \underline{z} . This verifies that diffraction is not the cause of signal oscillation with micrometer height, and reinforces the judgment that mode conversion is the real cause.

Bass notes that non-zero absorption a can be

accommodated in the formalism by making the propagation constant <u>k</u> complex, <u>k</u> = $2\pi/\lambda$ -i« (distinguish absorption « from $\alpha = y^2/(ka)^2$). The goal here is to show that <u>Q</u> from diffraction is additive to absorption losses for all practical purposes:

$$Q(\mathbf{q}, z) \cong Q_0(z) + \mathbf{q} z$$
$$Q(\mathbf{q}, z) = Q_1(z) + \mathbf{q} z$$

that is, that $\underline{Q}_1 \cong \underline{Q}_0$. We wrote new routines to compute the Bessel functions of complex argument $\boldsymbol{\xi}$. Rather than rewrite in complex arithmetic the computing center routines which are more general than we need, we noticed that $\boldsymbol{\xi}$ is large enough even at z/a as small as 0.5 (Re $\boldsymbol{\xi}$ ranges from 35.4 to 503 in our work) to use asymptotic expansions (Abramowitz and Stegun, p. 364):

$$J_{0}(z) = \left(\frac{2}{\pi}\right)^{\frac{1}{2}} z^{-\frac{1}{2}} \left\{ \left(1 - \frac{9}{128z^{2}} + \frac{3675}{32768z^{4}}\right) \cos(z - \frac{1}{4}\pi) + \left(-\frac{1}{8z} + \frac{75}{1024z^{3}}\right) \sin(z - \frac{1}{4}\pi) \right\}$$

$$J_{1}(z) \simeq \left(\frac{2}{\pi}\right)^{\frac{1}{2}} z^{-\frac{1}{2}} \left\{ \left(1 + \frac{15}{128z^{2}} - \frac{14175}{32768z^{4}}\right) \cos(z - \frac{3}{4}\pi) + \left(\frac{3}{8z} - \frac{105}{1024z^{3}}\right) \sin(z - \frac{3}{4}\pi) \right\}$$

These expansions are used with standard complex double precision sin and cos routines, CDSIN, CDCOS.

Since cos z, sin z can be written as $\frac{1}{2}(e^{iz}+e^{-iz})$, $\frac{1}{2i}(e^{iz}-e^{-iz})$, the form of $e^{-i}J_0(z)$ in the expression for <u>R</u> (hence (<u>R</u>), <u>Q</u>) can be seen as dominated by the lead term $e^{-i}e^{iz}=1$ for any complex <u>z</u>, if its imaginary part is small. Thus corrections from nonadditivity of diffraction and true absorption require $\text{Im } \underline{k} = \alpha$ to approach the order of magnitude of Re $\underline{k} = 2\pi/\lambda$, which never occurs in our experiments. We proceeded with the calculations and obtained results $\underline{Q_1(z)}$ indistinguishable from $\underline{Q_0(z)}$ (additions to notebook <u>5090</u>: 52). They are not reported in Table IV.

Table I. Sample of Raw Ultrasonic Data

Order of data explained in text; formats given in program

listing

 0.1238 34.66 4.510AFA 2/25/70 BY YPG; THIS RUN STARTS FRADIN_OF BETA AT 4.5 M HZ UNLY, NEW WAY: 5 DB READING IN 3RD RUN IS W/ POUR LIG. CONTACT
 3
6 29.00 37.93 47.25 55.95 64.85 74.08
 6
 29,10 38,37 47,30 56,35 66,38 75,00
6 29.00 38.09 47.72 57.18 66.22 75.57
 1
 5 5,000-06
09.00 07.72 06.44 05.16 03.89
 0.1238 34.66 7.52DATA 2/25/70 BY VPG; LAST 7.5 MHZ RETA; SIGNAL UNSTEADY, ESP
 • BETWEEN 1,2 DB. IN 1ST RUN
10
 29.00 34.84 41.45 46.00 50.81 55.59 60.46 64.52 69.26 73.70
 $\frac{10}{21}$
1
 5 5.000-06
 $\begin{array}{cccccccccccccccccccccccccccccccccccc$
0.1238 34.66 10.53DAFA 2/25/70 BY VPG
 2
29.00 31.79 34.48 37.20 39.97 43.83 45.50 48.00 51.06 53.68 56.28 58.88 62.01
 13
 31.53 34.36 36.81 39.76 42.76 49.56 46.59 31.15 34.11 2010 22.00 2010
0.1238 34.66 13.53DATA 2/25/70 BY VPG; SIGNAL BOUNCE AT 5-6 DB 1ST RUN, 4-3 D
B IN 2ND RUN ; RETUNED FOR 2ND RUN
 13
 29.00 30.98 32.92 34.87 35.76 37.58 39.84 41.34 43.16 45.06 47.25 49.07 51.04
13
 0
 0.1238 33.46 13.530ATA 2/25/70 BY VPG;
3
 13
 29.00 30.99 32.86 34.77 36.77 38.62 40.49 42.43 44.26 46.15 48.11 49.99 51.92
13 20 06 23 02 34 78 36 49 38 42 40 31 42 25 44 16 46 16 48 14 50 11 52 06 54 00
 0
 0.1238 33.46 10.54DATA 2/25/70 BY VPG:
2
 29.00 31.93 34.67 37.21 40.34 43.07 46.30 49.15 51.99 54.94 51.13 60.51 63.40
30.44 33.26 36.19 38.84 41.74 44.62 47.55 50.58 53.34 56.34 59.10 61.84 65.00
 0.1238 33.46 7.540ATA 2/25/10 BY VPG: 9 UB IN SKU KUY UNUSUAL

•	
	10
	29.00 34.03 38.90 43.84 48.78 54.02 58.78 63.40 68.06 72.97
	29.58 34.51 39.79 45.16 50.58 55.58 60.75 65.70 70.37 75.00
	29.00 34.08 39.64 44.65 49.71 54.33 59.66 64.41 69.24 71.39
	0.1238 33.46 4.52DAFA 2/25/70 BY VPG
	3
· · ·	5
	36.45 46.10 55.67 64.90 74.00 · · · · · · · · · · · · · · · · · ·
	29.00 39.39 48.78 58.05 67.53
	5 5.000-06
	09.00 07.72 06.44 05.16 03.88
· •	0.1238 32.66 4.520ATA 2/25/70 BY VPG; PRIOR T(ENCL.) CUNTRUL
·	5
	29.00 39.07 49.37 59.61 69.56
	31.39 41.97 51.67 61.40 71.00 · · · · · · · ·
· .	5 29.00 39.53 49.58 58.45 67.74 · · · · · · ·
•	5 31-35 40-56 51-52 60-58 70-00
	5
· · · · ·	
	<u>5 5.001-06</u> 70.00 60.00 50.00 40.00 30.00
• • • • • • • • • • • • • • • • • • • •	08.00 06.71 05.43 04.16 02.88
	2 10
	29.00 34.12 39.34 44.45 49.54 54.67 60.92 64.56 69.60 74.91 9 1
	34.13 39.16 44.21 49.36 54.64 59.71 65.43 70.54 75.00
	0.1238 32.66 10.54DATA 2/25/70 BY VPG: POOR F(ENCL.) CONTROL: BATH TEMP. READJ . TO CORRECT DRIFT
	2 13
	29.00 32.07 34.65 37.75 40.70 43.56 46.35 49.56 52.43 55.39 58.33 61.12 64.24
·	30.56 33.39 36.71 39.51 42.35 45.44 48.40 51.41 54.55 57.53 60.43 63.46 66.00
•	U 0.1238 32.66 13.54DATA 2/25/70 BY VPG; PONR FIENCL.1 CONTROL
 	2
	13
	13

211

<u>8</u> .

> · ·

Table II. Sample of Initial Computed Absorptions, Velocities

Format: the headings over the columns of results are explained below. The run conditions X, T, f listed in the first three columns identify the total set of α and β data following. Absorption data come first, then α -averaging in the same format. The velocity data are of slightly different format; most noticeably, the velocity value is printed in floating point rather than integer format.

Absorption

- X = mole fraction lutidine; T = temperature (C.); f = frequency (MHz.)
- N =for individual runs : no. of db readings = N_{kn} for averaging : no. of runs = N_k
- $\propto = \alpha/f^2$, in 10⁻¹⁷Np. cm.⁻¹ sec.²; $\sigma^{\alpha} =$ error bound in percent (100* σ^{α}/κ); $\chi^2 = (\chi^2/(N-F))^2$, N, F as in text
- I = for individual runs : which point deleted by 3-d test for average of runs : which run deleted (never occurs)
- C is an indicator of type of fit done; $C = C_A C_N$
 - $C_{A} =$ blank : linear fit or straight averaging Q : nonlinear fit (individual runs only)
 - C_N = blank : initial fit, all data points used - : result of 3-d test; point denoted by <u>I</u> above has been deleted
- REMARKS : under <u>individual runs</u>, two types occur, and only for runs with 3-d test deletions. 'Preferred' means this is the best deletion, giving lowest X2; 'taken auto'ly (ok)' means this is the latest deletion and was automatically chosen by the original program for averaging--but it was not the best one; this is rectified by hand later, as explained in the text.

under <u>averages</u>, the straight average with no deletions is the only one occurring. It is followed by the value of the average error rescale parameter <u>P</u> for the N_{b} runs in the particular average.

<u>Velocity</u>: exact analog of headings. Only one run is made; no averaging is done, just 3-d testing; no error rescale is computed.

						213			
<u> </u>	X	T	F	N	C 🗙	C.or	I	x2	REMARKS
(0.1238	34.66	4.51	6	585	2.03	0	0.36	
					-585	2.03	1	0.01	TAKEN AUTO'LY (OK)
					Q 574	0.75	0	0.36	G=-0.07 EG=0.19
					0-569	0.75	5	0.24	PREFERRED
				6	571	2.03	0	0.33	
			·		-574	2.22		0.13	PREFERRED
					Q 564	0.14	0	0.36	G=-0.05 EG=0.20
	·····			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Q-570	$\frac{0 \cdot 11}{2 \cdot 02}$	~ ~ ~	0.14	PREFERRED
				0	-563	2.03	7	0.14	
					0 547	0 70		0 31	$\frac{1}{6-0}$ 11 EG=0 19
					0-547	0.63	2	0.25	PREFERRED
					0-544	0.70		0.32	TAKEN AUTOLIY (OK)
				3	573	1.21	Ó	0.93	AVG = ESCALE=0.32
				-5-	1563.5	0.25	<u> </u>	0.53	
				-	1560.0	0.35	5	0.13	TAKEN AUTO'LY (OK)
(.1238	34.66	7.52	10	402	0.94	0	2.50	
					-415	1.10	1	1.86	PREFERRED
		· · · · · ·			Q 347	0.31	0	1.21	G=-0.22 EG=0.06
					Q-348	0.29	3	0.79	PREFERRED
					Q-339	0.40	10	1.11	TAKEN AUTO'LY (OK)
			<u></u> ,	10	406	0.94	0	1.03	
					-406	0.94	5	1.11	TAKEN AUTO'LY (OK)
	······································				<u>Q 384</u>	0.42	0	0.68	$G = -0.09 \pm G = 0.04$
					Q-382	0.42	8	0.56	PREFERRED
					$\frac{(1-381)}{(1-381)}$	0.56	$\frac{10}{2}$	0.69	TAKEN AUTULY (UK)
				<u> </u>	409	0.25	0	0.76	AVG. ESCALE-I.DU
				<u> </u>	1564 8	0.35	- 5	0.70	TAKEN AUTOLLY (OK)
C	1.1238	34.66	10.53	13	376	0.66	0	1.61	TAREN AUTO ET (UR7
	•1250	5100	10.75		-376	0.66		0.46	PREFERRED
				13	365	0.66	0	0.67	
					-364	0.73	13	0.50	PREFERRED
				2	370	0.49	0	0.0	AVG. ESCALE=0.48
(0.1238	34.66	13.53	13	347	0.65	0	2.08	
					-347	0.65	6	0.53	TAKEN AUTO'LY (OK)
					0 366	0.86	0	1.97	G = 0.05 EG = 0.03
					Q-368	0.80	4	1.55	PREFERRED
					Q-365	0.88	12	2.05	IAKEN AUIO'LY (OK)
				13	326	0.65	0	0.91	
					-325	0.72	4	0.05	PKEFEKKEU
					<u>N 319</u>	0.12	<u> </u>	0.85	
					₩-218 N-217	0.74	כ 0	0.85	TAKEN AUTOLIV (OK)
					325	0.47		0.0	$\frac{1}{4} \frac{1}{1} \frac{1}$
r	1.1228	33.46	13.52	12	328	0.65	0 0	0.35	AVO. LOCALL-I.JT
(J • 12 30	<u> </u>	10000	1.7	-328	0.65		0.85	TAKEN AUTOLLY (OK)
				13	327	0.65	ŏ	0.73	
					-327	0.65	4	0.25	TAKEN AUTU'LY (OK)

2	14

	X	T	ŕ	N	С 🖪	0 st	I	2ª	REMARKS
	0.1238	33.46	10.54	13	356	0.66	0	0.59	
					-356	0.67	4	0.46	PREFERRED
				13	357	0.66	0	0.35	
·····					-357	0.66	4	0.46	TAKEN AUTO'LY (OK)
			-	2	356	0.47	0	0.0	AVG. ESCALE=0.41
	0.1238	33.46	7.54	10	403	0.94		0.63	
				10	-403	0.94	4	0.46	TAKEN AUTU'LY (UK)
				10	202	0.94	$\frac{0}{10}$	0.98	DDEEDDED
				10	-201	1.09	10	2 20	PREFERRED
				10	-201	1 08	$\frac{10}{10}$	2.27	
				٦	392	0.59	10	2.73	$AVG_{-} = FSCALE = 0.72$
	0.1238	33.46	4.52		550	2.68		0.43	
	0.1200	33010		1	-561	3,78	ĩ	0.17	PREEERRED
				5	558	2.66	0	0.47	
				-	-569	3.75	1	0.32	PREFERRED
				5	544	2.68	0	0.65	
					-561	3.77	1	0.16	PREFERRED
		······		3	563	2.17	0	0.21	AVG. ESCALE=0.23
				5	1561.1	0.25	0	0.19	
				-]	1560.0	0.35	5	0.13	TAKEN AUTO'LY (OK)
	0.1238	32.66	4.52	5	510	2.69	0	0.32	
					-503	3.82	5	0.08	PREFERRED
				5	528	2.68	0	0.61	
					-542	3.78	1	0.30	PREFERRED
					-516	3.81	5	0.43	TAKEN AUTO'LY (OK)
				5	539	2.68	0	0.99	
			<u></u>		-562	3.77	1	0.65	PREFERRED
				5	535	2.68	0	0.82	
		. <u> </u>			-535	2.68		0.11	TAKEN AUTU'LY (UK)
				5	542	2.68	0	0.26	
					-540	2.85	<u>- 2</u> .	0.16	
				ל ב	りう」 1544 の	1.40	0	1 • 14	AVG. ESUALE=0.51
				2	1204.0	0.25	$\frac{0}{1}$	0.34	TAKEN AUTOLIN (OK)
	0 1220	22 44	7 6/	10	782 7309∮0	0.02	1	1.00	TANEN AUTURLET (UK)
	0.1258	52.00	1.04	10	-297	0.94		0 44	DRESERRED
				Q	381	1.08	0	0.58	T NET ENNED
					-378	1.28		0.41	PREFERRED
				2	383	0.77	ó	0.0	AVG. ESCALE=0.43
· · · · · · · · · · · · · · · · · · ·	0.1238	32.66	10-54	13	350	0.66		0.42	
		2.400			-350	0.66	7	0.41	TAKEN AUTO'LY (OK)
				13	344	0.66	<u>,</u>	0.76	
					-342	0.73	13	0.48	PREFERRED
		·		2	345	0.49	0	0.0	AVG. ESCALE=0.45
	0.1238	32.66	13.54	13	335	0.65	0	0.83	
				13	333	0.65	0	0.31	
				2	334	0.46	0	0.0.	AVG. ESCALE=0.63

Table III. Final Computed Absorptions, After Data Purging^b; With Error Bounds (σ_{Xf}^{α} , in percent), and Chi-Square Confidence Functions (x_X^2) on Errors

$$\alpha_{ex}/f^2$$
, 10⁻¹⁷ Np. cm.⁻¹ sec.²
(or, σ_{Xf}^{α} , %)

<u>X(lutidine</u>)	f(MHz.) <u>T(C.</u>)	= <u>4.5</u>	7 <u>.5</u>	<u>10.5</u>	<u>13.5</u>	(\mathbf{x}_{χ}^2)
0.9901	32.65 33.47 34.66	 ()	65 69 69 (7.8)	72 76 73 (2.4)	74 73 74 (1.6)	9 9 (0.37)
0.427	32.68 33.48 34.68	82 82 94 (5.6)	91 83 84 (4.7)	86 83 84 (1.7)	87 86 88 (1.5)	22 22 21 (0.75)
0.3823	32.66 33.45 34.66	98 103 107 (5.8)	108 106 106 (3.7)	104 99 102 (1.2)	107 106 104 (1.1)	22 21 21 (0.49)
0.3042	32.66 33.46 34.66	155 144 152 (2.7)	152 142 145 (2.7)	146 143 141 (0.7)	137 140 139 (0.7)	24 24 23 (1.20)
0.2132	32.64 33.46 34.66	240 236 247 (2.6)	222 226 234 (1.4)	210 222 218 (0.5)	208 212 208 (0.8)	23 22 21 (0.44)
0.1772	32.64 33.46 34.66	319 324 340 (1.2)	292 294 295 (1.5)	266 270 271 (0.5)	252 254 256 (0.7)	22 21 20 (0.54)
0.1238	32.66 33.46 34.66	488 514 526 (1.6)	373 381 400 (1.0)	327 337 352 (0.5)	315 309 317 (0.7)	19 19 18 (1.00)

	210	
≪ _{ex} /f ² ,	10^{-17} Np. cm. ⁻¹ sec. ²	
((or, σ_{Xf}^{α} , %)	

<u>X(lutidine)</u>	f(MHz.)) <u>T(C.</u>)	= <u>4.5</u>	7-5	<u>10.5</u>	<u>13.5</u>	$\frac{x_{cl}}{x_{X}^{2}}$
0.0892	32.66 33.48 33.84	564 594 600 (1.4)	426 459 458 (0.9)	341 350 356 (0.5)	290 301 306 (0.7)	17 16 16 1.12)
0.0722	32.66 33.44	515 559 (1.2)	445 491 (0.6)	339 348 (0,5)	267 276 (0.7)	15 15 (1.57)
0.0664	32.66 33.45	557 613 (1.2)	465 498 (0.6)	327 358 (0.5)	262 285 (0.7)	15 15 (0.66)
0.0614	32.64 33.45	486 524 (1.7)	430 431 (1.0)	304 317 (0.5)	238 254 (0.7)	14 14 (2.58)
0.0436	32.64 33.46 33.84	371 406 415 (2.0)	313 340 345 (1.0)	229 241 241 (0.5)	180 185 187 (0.7)	11 11 11 (1.09)
0.0288	32.68 33.42 34.64	189 202 231 (3.2)	195 210 222 (2.6)	138 141 154 (1.0)	101 107 113 (1.1)	9 9 0.65)
0.0000 ^c	all	19	19	19	19	6

^aquoted as K_{ex}/f², after subtracting M_{cl}/f² and the mode conversion correction ^bsee text on method of data-point deletion ^cliterature value, not our measurements

216

Final Computed Velocities, After Data Purging^a

13, m. sec.⁻¹ (error bound $\sigma_{p}=0.3\%$, all)

(values at f=4.5 MHz. and underlined values are most reliable)

X(lutidine)	f(MHz.) <u>T(C.</u>)	4.5	7.5	<u>10.5</u>	<u>13.5</u>	
0.9901	32.65 33.47 34.66		1324.4 1326.9 1320.1	1336.2 1324.6 1324.3	1330.0 1331.7 1329.2	
0.427	32.68 33.48 34.68	1478.6 1489.2 1489.1	1497.2 1498.8 1488.7	1495.5 1495.8 1493.9	1507.6 1502.6 1498.6	
0.3823	32.66 33.45 34.66	1508.3 1504.2 1499.9	1507.8 1499.7 1500.4	1517.8 1508.3 1508.8	1520.9 1515.1 1514.0	
0.3042	32.66 33.46 34.66	1540.0 1533.6 1522.4	1529.2 1532.9 1526.3	1534.2 1549.8 1527.8	1527.8 1527.9 1544.8	
0.2132	32.64 33.46 34.66	1549.9 1552.3 1553.3	<u>1555.0</u> 1547.8	1559.7 1556.0 <u>1548.8</u>	1569.8 1574.1 1559.8	
0.1772	32.64 33.46 34.66	1564.0 1567.6 1567.0	1566.7 1560.1 1556.9	1 <u>573.1</u> 1569.1 <u>1563.5</u>	1592.1 1572.3 1581.1	
0.1238	32.66 33.46 34.66	1568.8 1561.1 1560.0	<u>1564.8</u>			4.5 MHz
<u>x</u>	<u>T</u>	* P	X	<u>T</u>	₽ J	only
0.0892	32.66	1558.8	0.0614	33.45	1562.2	
	33.84	1554.9	0.0436	32.64	1561.6	
0.0722	32.66	1567.0		33.84	1557.8	
0.0664	32.66 33.45	1565.8 1566.3	0.0288	32.68 33.42 34.64	1562.2 1562.7 1560.0	
0.0614	32.64	1565.2		(continue	d)	

1 3,	m. sec1	(error	bound 5 13 =0.3% , all)
	(values values	s at f=4. s are mos	5 MHz. and underlined t reliable)
<u>X(lutidine</u>)	f(MHz.) <u>T(C.</u>)	4.5	13.5
0.0000	32.64 34.66	1516.8 1518.6	1525.3
benzene	32.65	1260.7	

^asee text on method of data-point deletion

.

Table IV. Diffraction Corrections $Q_0(a/\lambda, z/\lambda) = Q_0(z)$ for

Our System, a = 12.7 mm., **13** = 1570 m./sec.

(Parameters in parentheses are the more general reductions: a/λ is given next to f, z/λ next to Q itself)

f, MHz. z., mm (a/λ)

 Q_0 in decibels

	4.5(36.4)	7.5(60.7)	10.5(84.9)	13.5(109.2)
8	0.255 (22.9)	0.198	0.167	0.148
10	0.286(28.7)	0.222	0.188	0.165
12	0.313(34.4)	0.243	0.206	0.182
14	0.339(40.1)	0.203	0.222	0.196
10	0.302 (45.0)	0.201	0.250	0.210
10	0.304 (31.0)	0.290	0.252	0.225
20	0.404(5(.5))	0.320	0.270	0.255
22	0.424 (0).1)	0.329	0.201	0.240
24	0.442 (00.0)	0.358	0.303	0.267
28	0.402(14.3)	0.372	0.JUJ	0 277
30	0.496(86.0)	0.384	0 325	0.287
32	0.510(91.7)	0.396	0.336	0.296
34	0.526(97.4)	0.408	0.346	0.305
36	0.543 (103)	0.420	0.357	0.314
38	0.558(109)	0.434	0.366	0.323
40	0.571(115)	0.443	0.375	0.331
42	0.583 (120)	0.456	0.384	0.340
44	0.597 (126)	0.464	0.393	0.347
46	0.615 (132)	0.474	0.403	0.355
48	0.626 (138)	0.486 (229)	0.411	0.362
50	0.635 (143)	0.497 (239)	0.420	0.370
52	0.655 (149)	0.506 (248)	0.427	0.377
54	0.659 (155)	0.515 (258)	0.437	0.386
56	0.678 (160)	0.523 (268)	0.445	0.391
58	0.683 (166)	0.532 (277)	0.451 (388)	0.399
60	0.703 (172)	0.543 (287)	0.458 (401)	0.405
62	0.704 (178)	0.554 (296)	0.466 (415)	0.413(533)
64	0.726(183)	0.559 (306)	0.473(420)	0.420(550)
66	0.729(189)	0.568(315)	0.481 (441)	0.425(500)
68	0.741 (195)	0.580(325)	0.490(455)	0.431(505)
70	0.760(201)	0.503 (334)	0.490(400)	0.437(002)
72	0.750 (200)	0.597(344)	0.503 (402)	0 110 (CIY)
(4 76	0.((2.(212)))	$0.000 (304) \\ 0.612 (262)$	0.500 (495)	0 455 (65b)
70	0,702 (224)	0.013 (303)	0.517(500) 0.525(522)	0.452(671)
80	0.707 (220)	0.013 (3(3)	0.528 (525)	0 460 (688)
00	$\cup \cdot (\forall (\ (\land \land \forall))))$	0.027 (302)		

Appendix V. Details of Theoretical Interpretation of Ultrasonic Results.

Paper I developed and extended Fixman's theory for interpreting critical region sound absorption in molecular terms, beginning from a general framework of irreversible thermodynmaics. Paper II presented the ultrasonic results for our binary system, which gave clear indications of an additional absorption from thermal relaxation. It also outlined the two-part (critical + thermal) relaxation theory we developed thermodynamically to analyze our results quantitatively. Paper II finally presented our analysis, limited to the critical absorption only by fundamental theoretical obstacles. In this Appendix we give the details of our general theory and of the data interpretation, for the record as well as for any future work toward a useable total theory. First we give more details in Fixman's theory of critical absorption. Then we give details of the chemical/ physical models for thermal relaxation and for solution thermodynamics. The thermodynamics could have been a unifying link between critical and thermal relaxation mechanisms. but it failed.

(A) <u>Reduction</u> of \ll_{CR}/f^2 to the molecular parameters h, 1^2 or 3, 1^2 :

--(1) Form of \ll_{CR}/f^2 from Fixman theory (equation numbers not of the form V.XX refer to our papers I or II, or

220

$$\boldsymbol{\alpha}_{CR} = \frac{\boldsymbol{\omega} (\boldsymbol{\gamma}_{o-1})}{2 \, \boldsymbol{\beta} \, \boldsymbol{C}_{p}} \operatorname{Im} \boldsymbol{\Delta}_{M} \qquad (I.38)$$

$$\boldsymbol{\Delta}_{M} = \frac{\boldsymbol{\Delta}}{n_{1}+n_{2}}, \quad \boldsymbol{\Delta} = \text{heat capacity/unit vol.},$$

$$n_{i} = \text{ moles/unit vol.}$$

From (I.33) and (I.34):

$$\Delta = \frac{\mathrm{kh}}{4\mathrm{m}^2} (\mathrm{T}_{\mathrm{c}} \frac{\mathrm{d} \mathrm{k}^2}{\mathrm{d} \mathrm{T}})^2 \mathrm{I}$$

$$I = \int \frac{dk \ k^4}{(k^2 + \kappa^2)(i\omega + hk^2[k^2 + \kappa^2])}$$

Change variables: $x = k/\kappa$, $d = \kappa^2(h/\omega)^{\frac{1}{2}}$; (V.1)

$$I = \frac{M^{3}}{\omega d^{2}} \int \frac{dx x^{4}}{(1+x^{2})(-id^{-2}+x^{2}[1+x^{2}])}$$
$$= \frac{\omega^{-\frac{1}{4}}}{h^{3/4}} d^{-\frac{1}{2}} \int \dots \qquad \equiv \frac{\omega^{-\frac{1}{4}}}{h^{3/4}} f(d) \qquad (\alpha.12)$$

$$\Delta = \frac{\mathrm{kh}^{\frac{1}{4}} \omega^{-\frac{1}{4}}}{4m^2} \left(\mathrm{T}_{\mathrm{c}} \frac{\partial \mathbf{K}^2}{\partial \mathrm{T}} \right)^2 \mathbf{f}(\mathrm{d}) \qquad (\alpha.11)$$

$$\kappa_{ex}/f^{2} = \frac{\omega^{-5/4}(\gamma_{o-1})k}{(n_{1}+n_{2})^{2}\beta c_{p}} (T_{c}\frac{\partial k^{2}}{\partial T})^{2} h^{\frac{1}{4}} \operatorname{Im}(f(d) + B(X,T,f))$$

$$\equiv \mathcal{Q}(d)$$
(V.2)

<u>B(X,T,f)</u> represents TR; near X_c and at our low frequencies, its X- and f-dependence are weak, and its T-dependence is weak relative to α_{CR}/f^2 ; B \simeq const.

We see C_R/f^2 to be a function of the bulk, 'static' parameters ω , n_i , C_p , C_v , β , T_c , and also of the two microscopic parameters l^2 (since $\partial K^2/\partial T = 6/l^2$) and \ddot{n} (\underline{d} in $\underline{f}(\underline{d})$ is a function of ω , l^2 , and h also).

--(2) To develop a bookkeeping for fitting α_{ex}/f^2 to our data, define

$$\kappa_{ex}^{2}/f^{2} = Af^{-5/4} \mathcal{Q}(d) + B$$
 (V.3a)
 $d = C_{0}(T-T_{c})f^{-\frac{1}{2}}$ (V.3b)

Results of the fit to the data, which is a nonlinear fit in C_0 , linear in A, B:

-- C_0 was scanned to minimize the residual error of the linear fit. Eight data points were fit, four <u>f</u> at each of two T. For $C_0 = 0.2$ (<u>f</u> in MHz., α/f^2 in 10^{-17} Np. cm.⁻¹ sec.²), the error was minimized on a crude grid. The error was insensitive to C_0 , however. There was a consistent localization of the total error in the <u>f</u> = 7.5 MHz. points, the computed values always being lower; Eq. (V.2) gives a poor shape for α/f^2 vs. <u>f</u>. **.**(d) was nearly constant over the <u>d</u>-range we sampled in our 8 data points, so essentially $\alpha_{ev}/f^2 \sim f^{-5/4}$ is predicted.

--Adjustment of T_c was tried, with little result. This is as expected, since it only changes <u>d</u> values, to which the fit is insensitive.

--Separate fits of the four <u>f</u> points were tried for each of the two T; only one degree of freedom is left in both fits. Results are poor; the <u>B</u> term was negative for the best fits, attempting to smooth the poor shape of α_{CR}/f^2 . with <u>f</u>.

--Finally, we gave <u>B</u> a temperature dependence, a Tcoefficient of +3% deg.⁻¹ to -9% deg.⁻¹, with little effect (C_o changes but the net error is relatively unaffected), since it does not change the problematic <u>f</u>-dependence of \mathbf{q}_{ex}/f^2 .

Selecting
$$C_0 = 0.20 \text{ MHz}.^{\frac{1}{2}}C.^{-1}$$

= 2.0x10² sec.^{- $\frac{1}{2}C.^{-1}$,}

the corresponding A, B values are

$$B = 201 (x10^{-17} \text{Np. cm.}^{-1} \text{sec.}^2); \text{ very reasonable}$$

$$A = 7.0x10^3 (x10^{-17} \text{Np. cm.}^{-1} \text{sec.}^2 \text{MHz.}^{-5/4})$$

$$= 2.2x10^{-6} \text{ cm.}^{-1} \text{sec.}^{3/4}; \text{ about 0.1 of the value}$$

for nitrobenzene: isooctane; reasonable.

--(3) Reduce to the molecular parameters: comparing Eqs. (V.2), (V.3a), we see

$$A = \frac{(2\pi)^{-5/4} (\gamma_{0}-1) k h^{\frac{1}{4}}}{2 \eta_{3} c_{p}(n_{1}+n_{2})} (T_{c} \frac{\partial K^{2}}{\partial T})^{2},$$

and comparing Eqs. (V.1), (V.3b) and using $\kappa^2 = 6 |T-T_c|/l^2$, $C_0 = (2\pi)^{-\frac{1}{2}} \frac{6}{T_0 l^2}$.

Now factor all the fixed macroscopic parameters from the A, C_0 expressions, leaving only powers of h, 1^2 :

$$A = Q h^{\frac{1}{4}} / 1^{\frac{4}{3}}; C_{0} = C h^{\frac{1}{2}} / 1^{2}$$

$$Q = \frac{36(2\pi)^{-5/4} (r_{0}-1)k}{2 \, r_{0} C_{p}(n_{1}+n_{2})}$$

$$C = (2\pi)^{-\frac{1}{2}} 6 / T_{c}.$$

Reduce the data to $C_0/\mathcal{C} = \overline{C} = h^{\frac{1}{2}}/1^2$, $A/\mathcal{Q} = \overline{A} = h^{\frac{1}{4}}/1^4$, and get h, 1^2 as

h =
$$(\overline{C}^2/\overline{A}_{\circ})^{4/3}$$
, $1^2_{=} (\overline{C}/\overline{A}^2)^{1/3}$
---(4) Evaluate **Q,C**; need ω , k, $\gamma_0 = (C_p - C_v)/C_v$,

p, $n_1+n_2 = \overline{V}^{-1}$, and T_c (take component 1 as water): $T_{2} = 306.7 K.$ $\implies C = 7.80 \times 10^{-3} \text{ K}^{-1}$ = 1566 m. sec.⁻¹, measured C_{p} , C_{y} --not measured independently; estimate C_{p} from the pure fluid values $C_p \simeq X_1 C_p^1 + X_2 C_p^2$; C_p^2 estimated from other pyridine, heterocycle values $= 0.935(18 \text{ cal.C.}^{-1} \text{mole}^{-1}) + 0.065(50 \text{ cal.C}^{-1})$ mole⁻¹) = 20 cal. C.⁻¹ mole⁻¹ and get C_v from $C_p-C_v = T\overline{V}\partial/K_T$, notation of paper I: $q/(T\Delta \backslash q\Delta) - \approx q/(T\delta \backslash q\delta) - = 0$ For our mixture at X_c, between T = 32.65 and 34.65 C., our initial $\rho \leftrightarrow X$ data give $\rho = 0.98900$, 0.98759: $\theta \simeq 7.1 \times 10^{-4}$ C.⁻¹ $K_{\rm T}$ also was not measured; use $K_{\rm T} = K_{\rm S} + T \overline{V} \theta^2 / C_{\rm n}$ $K_5 = 1/\rho \beta^2$, $\rho = 0.98900 \times 10^3$ kg. m.⁻³ $= 0.413 \times 10^{-9} \text{ nt}.^{-1} \text{m}.^{2}$ $\overline{V} = \frac{X_1 M W_1 + X_2 M W_2}{P_{soln.}}$ = $\frac{0.065(107) + 0.935(18)}{0.989}$ cc. mole⁻¹ $= 24.1 \times 10^{-6} \text{ m.}^3 \text{ mole}^{-1}$ $K_{\rm m} \simeq 0.458 {\rm x10}^{-9} {\rm nt.}^{-1} {\rm m.}^2$ $C_{p}-C_{v} \simeq 1.94$ cal. C_{v}^{-1} mole⁻¹ 7-1 = 0.107 $a = 0.491 \times 10^{-33} \text{ m.}^{2} \text{molecule}^{-1} \text{sec.}$ $\overline{A} = A/a = 4.47 \times 10^{29} \text{ m.}^{-3} \text{sec.}^{-\frac{1}{4}} \text{molecule}$

$$\overline{C} = C_0/C = 2.56 \times 10^4 \text{ sec.}^{-\frac{1}{2}}$$

$$h = 1.66 \times 10^{12} \text{ A}^4 \text{ sec.}^{-1}; \text{ reasonable size of pair diffusion constant}$$

$$1^2 = 50.5 \text{ A}^2; \text{ reasonable in comparison to other systems}$$

These values are not final; they are adjusted for Fixman's oversight; as noted in paper I.

--(4) Reduce <u>h</u> further, to a molecular friction constant 5, as does Fixman (his \mathfrak{e}), from his Eq. ($\mathfrak{a}.5$):

h =
$$\frac{(n_1+n_2)\overline{V}_1^2 \, \phi_k r_c}{m_1 c_2 - 2\pi a_3}$$

n₁ in molecules/unit vol.
 \overline{V}_1 in vol./molecule
 c_2 = weight fraction of component 2 (lut.)
 \overline{V}_1 = 18.07 cc. mole⁻¹ = 3.00x10⁻²³ cc. molecule⁻¹
 ϕ_1 = $n_1 \overline{V}_1$
 $n_1 = \rho \frac{x_1}{x_1 M W_1 + X_2 M W_2} = 0.0376$ moles cc.⁻¹
 ϕ_1 = 0.680
 $c_2 = x_2 M W_2 / (X_1 M W_1 + X_2 M W_2) = 0.708$
 $N = 48.8x10^{-26}$ m.⁵molecule⁻¹ sec.⁻²
 $\overline{H} = h/N = 3.4x10^{-14} A^{-1}$ sec.
 $a_3 = 1/\overline{H} = 2.94x10^{13} A$ sec.⁻¹

Now, Fixman derives $a = 3\overline{V}_2/2\pi l^2$ from the <u>Flory-Huggins</u> <u>model:</u> a = 1.84 A: very low compared to other consolutes

225

(B) <u>Derivation</u> of Correction Factors for 1,; from Fixman's original results, due to Fixman's oversight in the form of f(d)--faulty translation of singlet---> pair diffusion:

Fixman derived a pair diffusion equation for $G(\mathbf{r})$ or its Fourier transform G_k (Eq. 40, viscosity paper), leading to our Eq. (I.33). The diffusion constant <u>h</u> appears in two places in the incremental heat capacity (or $\boldsymbol{\alpha}, \boldsymbol{\alpha}/f^2$)-as a factor in the numerator, and buried in the denominator of the integrals I or f(d). But we showed in our redevelopment that <u>h</u> should be replaced by <u>h</u>/2 in the latter place. We indicated that this requires adjustment of Fixman's 1, **y** by 1.26, 0.20, respectively. We derive these factors here:

Proper form:

$$\Delta = \frac{\mathrm{kh}^{\mathrm{i}}}{4\mathrm{n}^2} \left(\mathrm{T}_{\mathrm{c}} \frac{\partial \mathbf{K}^2}{\partial \mathrm{T}} \right)^2 \mathrm{I}^{\mathrm{i}}$$

$$I' = \int \frac{dk \ k^{4}}{(k^{2}+2)(i\omega + \frac{h'}{2}k^{2}[k^{2}+\kappa^{2}])}$$

h' is the proper diffusion constant

Performing the change of variables

$$x = k/K$$
, $d = K^2 (h!/2\omega)^{\frac{1}{2}}$, similarly to before,

we get

$$I^{*} = \frac{2}{h^{*}} \left(\frac{h^{*}}{2}\right)^{\frac{1}{4}} f(d) = 2^{\frac{3}{4}} \frac{\omega^{-\frac{1}{4}}}{n^{*}} f(d),$$

with f(d) the same mathematical form as before. Thus in our forms $\frac{1}{f^2} = Af^{-5/4} \mathcal{Q}(d) + B$, $d = C_0 f^{-\frac{1}{2}} |T-T_c|$, we have really $A = 2^{3/4} \mathcal{Q}(h^*)^{\frac{1}{4}} / (1^*)^{\frac{1}{4}}$

$$C = C 2^{-\frac{1}{2}} (h^{\dagger})^{\frac{1}{2}} / (1^{\dagger})^{2}$$

and

$$h' = 2^{7/3} (\overline{c}^2 / \overline{A})^{4/3} = 2^{7/3} h_{old}^{=} 5.04 h_{old}^{=}$$

$$\implies s' = 0.20 s_{old}^{=}$$

$$l' = 2^{1/3} (\overline{c} / \overline{A}^2)^{1/6} = 2^{1/3} l_{old}^{=} 1.26 l_{old}^{=}$$

(C) <u>Proving</u> Fixman's expression for the diffusion constant \underline{h} ,

$$h = \frac{kT \not P_1 \overline{\nabla}_1^2 (n_1 + n_2)}{m_{1c_2} 2\pi a} \qquad (\ll.5)$$

There are some difficulties in verifying this relation: 1) Fixman commonly does not label the variables held fixed in his partial derivatives; 2) he changes notation in transit, or makes errors in notation corrected implicitly in later papers; 3) he sometimes uses approximate equalities in derivations but quotes them as equalities. These three problems plus the spreading of his total derivation over 4 papers are great obstacles to following his line of reasoning. We have corrected some implicit assumptions of the types above in our paper I, but we still have to verify the above equation.

The diffusion equation outside the critical region (I.12) has a diffusion constant

 $D = \chi(\partial \mu / \partial c_2)$ (1)

which is retained in the critical region (only the driving terms are altered) but written as

$$D = \frac{h\rho}{2} \kappa^2 .$$

Clearly,

h

$$= \frac{2 \mathbf{a}}{\rho \kappa^2} \left(\frac{\partial \mu}{\partial c_2} \right)_{\mathrm{P,T}}$$

and from this we must derive Eq. (a.5). Let us reduce Eq. (1). First, we take, as does Fixman, c_2 to be the mass fraction of component 2. Correspondingly, μ is the difference in chemical potentials per unit concentration $\mu_2 - \mu_1$. As Fixman later uses μ_1 as the chemical potential per molecule, we must convert

$$\mu = \mu_2 / m_2 - \mu_1 / m_1$$

$$d\mu = d\mu_2 / m_2 - d\mu_1 / m_1$$

By the Gibbs-Duhem relation, μ_1 and μ_2 are constrained to vary as

$$\stackrel{n_1 d\mu_1}{\longrightarrow} \stackrel{+}{\longrightarrow} \stackrel{n_2 d\mu_2}{\longrightarrow} \stackrel{=}{\longrightarrow} \stackrel{0}{\longrightarrow} \stackrel{-}{\longrightarrow} \stackrel{n_1 m_1 + n_2 m_2}{\longrightarrow} \stackrel{-}{\longrightarrow} \stackrel{-}{$$

and thus

$$D = \frac{\alpha \rho}{n_2 m_1 m_2} \left(\frac{\partial \mu_1}{\partial c_2} \right)_{P,T}$$

$$= \left(\frac{\partial \mu_1}{\partial n_2}\right)_{P,T} \left(\frac{\partial P}{\partial \mu_1}\right)_{n_2,T}.$$

He uses a Maxwell relation

$$\left(\frac{\partial V}{\partial N_1}\right)_{P,T,N_2} = \left(\frac{\partial \mu_1}{\partial P}\right)_{T,N_1,N_2}$$

and an assumption of small compressibility of the mixture,

$$\left(\frac{\partial \mu_1}{\partial P}\right)_{T,N_1,N_2} \left(\frac{\partial \mu_1}{\partial P}\right)_{n_2,T} = -\overline{V}_1$$

to get

$$\frac{\partial \mathbf{n}'}{\partial \mathbf{n}_2} \simeq -\frac{1}{\overline{\mathbf{v}}_1} (\frac{\partial \mu_1}{\partial \mathbf{n}_2})_{\mathbf{P},\mathrm{T}}$$

Now, in the critical region, according to the Ornstein-Zernike model of classical thermodynamics,

$$\int G_{22}(\mathbf{r}) \, d\mathbf{r} = 4\pi a/K^2$$

$$\implies \frac{4na}{K^2} = -\frac{\overline{v}_1}{n_2} \left[\frac{kT}{k_1} + \frac{1}{\overline{v}_1} \right]. \quad (I.26)$$

The second term in brackets is negligible relative to the first when $\partial \mu_1 / \partial n_2 \rightarrow 0$, as in the critical region --unless we are trying to get the dependence of absorption on composition away from X_c (Puls' thesis, e.g.). Thus

$$\frac{\partial u_1}{\partial n_2} \simeq \frac{\overline{v}_1 k T \kappa^2}{4 \pi a n_2} .$$
--We must put this in terms of $\partial \mu_1 / \partial c_2$:

$$\frac{\partial \mu_1}{\partial c_2} \simeq (\frac{\partial \mu_1}{\partial n_2}) (\frac{\partial n_2}{\partial c_2})_{\overline{v}} .$$

The chain rule is justified, since c_2 (with P, T) is a complete description. We need a condition on the latter partial to reflect the P, T constancy, and we choose $d\bar{V}=0$ (low compressibility; also consistent with relation I.17 between δG and $[\delta n_2]^2$):

Thus

$$dc_{2} = \left(\frac{\delta c_{2}}{\delta n_{1}}\right)_{n_{2}}dn_{1} + \left(\frac{\delta c_{2}}{\delta n_{2}}\right)_{n_{1}}dn_{2}$$

$$c_{2} = \frac{n_{2}m_{2}}{Q} \implies \frac{\delta c_{2}}{\delta n_{1}} = -\frac{n_{2}m_{1}m_{2}}{Q^{2}}$$

$$\frac{\delta c_{2}}{\delta n_{2}} = \frac{n_{1}m_{1}m_{2}}{Q^{2}}$$

$$dc_{2} = \frac{m_{1}m_{2}}{Q^{2}}\left[-n_{2}dn_{1} + n_{1}dn_{2}\right]$$

$$dv = \overline{v}_{1}dn_{1} + \overline{v}_{2}dn_{2} \implies dn_{1} = -\frac{\overline{v}_{2}}{\overline{v}_{1}}dn_{2}$$

$$dc_{2} = \frac{m_{1}m_{2}}{Q^{2}}\left[\frac{n_{2}\overline{v}_{2}+n_{1}\overline{v}_{1}}{\overline{v}_{1}}\right]^{2}dn_{2}$$

$$= 1$$

$$dc_{2} = \frac{m_{1}m_{2}}{Q^{2}}\left[\frac{n_{2}\overline{v}_{2}+n_{1}\overline{v}_{1}}{\overline{v}_{1}}\right]^{2}dn_{2}$$

$$\left(\frac{\delta c_{2}}{\delta n_{2}}\right)_{\overline{v}} = \frac{m_{1}m_{2}}{Q^{2}\overline{v}_{1}}^{2} = \frac{m_{1}c_{2}}{Q^{2}\overline{v}_{1}n_{2}}$$

$$\frac{\delta u_{1}}{\delta c_{2}} = \frac{Q\overline{v}_{1}n_{2}}{m_{1}c_{2}} \cdot \frac{\overline{v}_{1}kTk^{2}}{4nan_{2}}$$

$$D = \frac{d}{n_{2}}Q^{2}dn_{2} \cdot \frac{Q\overline{v}_{1}^{2}kTk^{2}}{\mu_{1}c_{2}\mu_{1}da}$$

$$h = \frac{\langle \rho \overline{V}_1^2 kT}{n_2 m_1^2 m_2 c_2^2 m_2}$$

---Fixman uses an intermolecular friction constant in preference to ∞ , converting through an ideal diffusion constant D_{id} . In Sec. VIII in his viscosity paper, he derives a rigorous relation

$$^{D}id = \frac{a\rho kT}{m_{1}m_{2}} 2_{n_{1}} \left(\frac{\partial \ln X_{2}}{\partial n_{2}} \right)_{\overline{V}} = \frac{a\rho kT}{m_{1}m_{2}} 2_{n_{1}n_{2}} (n_{1}+n_{2})\overline{V}_{1}$$

and then defines

$$\mathbf{\dot{y}} \equiv \frac{\mathbf{k}T}{\mathbf{m}_{2}\mathbf{D}_{1d}}$$

$$\implies \mathbf{\dot{x}} = \frac{\mathbf{m}_{1}\mathbf{m}_{2}^{2}\mathbf{n}_{1}\mathbf{n}_{2}(\mathbf{n}_{1}+\mathbf{n}_{2})\overline{\mathbf{V}}_{1}}{\mathbf{\rho}\mathbf{k}T} \quad \mathbf{D}_{1d}$$

$$= \frac{\mathbf{m}_{1}\mathbf{m}_{2}\mathbf{n}_{1}\mathbf{n}_{2}(\mathbf{n}_{1}+\mathbf{n}_{2})\overline{\mathbf{V}}_{1}}{\mathbf{\rho}\mathbf{\dot{y}}}$$

$$\mathbf{h} = \mathbf{\dot{v}}\overline{\mathbf{V}}_{1}^{2}\mathbf{k}T \quad \mathbf{\dot{v}}_{1}\mathbf{m}_{2}\mathbf{c}_{2}^{2}\mathbf{m}a \quad \mathbf{\dot{v}}_{1}\mathbf{m}_{2}\mathbf{n}_{1}\mathbf{\dot{x}}(\mathbf{n}_{1}+\mathbf{n}_{2})\overline{\mathbf{V}}_{1}}$$

$$\mathbf{using } \mathbf{n}_{1}\overline{\mathbf{V}}_{1} = \mathbf{\dot{v}}_{1}, \text{ we get}$$

and using $n_1 \overline{v}_1 = \phi_1$, we get

$$h = \frac{\overline{V}_{1}^{2} kT(n_{1}+n_{2}) \phi_{1}}{m_{1}^{c} 2^{2\pi a}}$$
, Q.E.D.

(D) A <u>Comment</u> on Fixman's choice of the dissipative equation and its driving force: Fixman's earlier papers on general critical region thermodynamics and on ultrasonic attenuation focus on the equations of motion for the singlet and pair densities, rather than the singlet and pair concentration deviations. The latter obey a purely dissipative equation, modified from the standard non-critical diffusion equation; the choice of thermodynamic description for the entropy production and the choice of driving term are well justified. The density equations of motion, on the other hand, are mixed propagative-dissipative and encompass the anomalous entropy production or sound absorption only for the gas-liquid critical point, and then in a non-obvious way. Fixman's first attempts to describe the liquid-liquid critical absorption failed for this reason.

(E) <u>Estimation</u> of the pressure-driven contribution to the critical absorption, relative to the thermal absorption: The δT term in the driven entropy fluctuation, hence in $\boldsymbol{\varkappa}$, originated in the derivative

$$\left(\frac{\partial \mathcal{A}^{2}}{\partial T}\right) \delta T \sim \left(\frac{\partial^{2} \mu_{1}}{\partial T \partial c_{2}}\right) \delta T = \frac{\partial^{2}}{\partial T \partial c_{2}} \left(\frac{\partial G_{\text{mix}}}{\partial N_{1}}\right)_{N_{2}},$$

where G_{mix} is the free energy change for an arbitrary mass of solution and the N_i are total numbers of moles (or molecules, if one prefers). The analogous δP -driven term is proportional, with the same constant of proportionality, to

$$\frac{\partial^{3} G_{\text{mix}}}{\partial P \partial c_{2} \partial N_{1}} = \frac{\partial}{\partial c_{2}} \left(\frac{\partial}{\partial N_{1}} \right)_{N_{2}} \Delta V_{\text{mix}} .$$

The derivative $(\partial/\partial N_1)_{N_2}$ factors as

$$\frac{\left(\frac{\partial}{\partial N_{1}}\right)_{N_{2}}}{\left(\frac{\partial}{\partial N_{1}}\right)_{N_{2}}} = \left(\frac{\partial N}{\partial N_{1}}\right)_{N_{2}} \left(\frac{\partial}{\partial N}\right)_{X_{2}} \left(\frac{\partial X_{2}}{\partial N_{1}}\right)_{N_{2}} \left(\frac{\partial}{\partial X_{2}}\right)_{N_{2}} \left(\frac{\partial}$$

$$= \left(\frac{\partial}{\partial N}\right)_{X_2} - \frac{X_2}{N} \left(\frac{\partial}{\partial X_2}\right)_N$$

and clearly $\Delta V_{mix} = N \Delta \overline{V}_{mix}$, where the bar denotes the molar quantity. Then the δP term measure becomes, for $c_2 = X_2$,

$$\frac{\partial \Delta \overline{v}_{\text{mix}}}{\partial X_2} - X_2 \frac{\partial^2 \Delta \overline{v}_{\text{mix}}}{\partial X_2^2}$$

and

$$\begin{split} & \Delta \overline{v}_{\text{mix}} = v^{E} = \frac{x_{1} M \overline{w}_{1} + x_{2} M \overline{w}_{2}}{\rho_{s}} - \frac{x_{1} M \overline{w}_{1}}{\rho_{1}} - \frac{x_{2} M \overline{w}_{2}}{\rho_{2}} \\ & \frac{\partial \Delta \overline{v}_{\text{mix}}}{\partial x_{2}} = \frac{(M \overline{w}_{2} - M \overline{w}_{1})}{\rho_{s}} - \frac{\Delta \overline{v}_{\text{mix}}}{\rho_{s}} (\frac{\partial \rho_{s}}{\partial x_{2}}) - \frac{M \overline{w}_{2}}{\rho_{2}} + \frac{M \overline{w}_{1}}{\rho_{1}} \\ & \rho_{s}^{2} (\frac{\partial^{2} \Delta \overline{v}_{\text{mix}}}{\partial x_{2}}) = -(M \overline{w}_{2} - M \overline{w}_{1}) (\frac{\partial \rho_{s}}{\partial x_{2}}) - \rho_{s} (\frac{\partial \Delta \overline{v}_{\text{mix}}}{\partial x_{2}}) (\frac{\partial \rho_{s}}{\partial x_{2}}) \\ & + \Delta \overline{v}_{\text{mix}} \left[(\frac{\partial \rho_{s}}{\partial x_{2}})^{2} - \rho_{s} (\frac{\partial^{2} \rho_{s}}{\partial x_{2}}) \right] \end{split}$$

The ratio \underline{R} of the pressure-induced to the temperature-induced absorption is

$$R = \left[\frac{\partial \Delta \overline{v}_{\min x}}{\partial x_2} - x_2 \frac{\partial^2 \Delta \overline{v}_{\min x}}{\partial x_2^2}\right] \frac{C_p}{(\partial^2 \mu_1 / \partial T \partial x_2)} \cdot \frac{C_p}{T V \theta}$$

since for $\delta S = 0$, $\frac{C_p}{T} \delta T - V \Theta \delta P = 0$.

A modified Flory-Huggins model will be used for the term $\partial^2 \mu_1 / \partial X_2 \partial T$, in terms of mole fractions rather than volume fractions:

$$\frac{\partial \mu_1}{\partial x_2} = -\frac{R_g T}{(X_2^{c})^2} \left[\frac{1}{X_1} - \frac{2}{X_1^{c}} + \frac{T_c}{T} \frac{X_1}{(X_1^{c})^2} \right]$$

which is a form satisfying $\partial \mu_1 / \partial X_2 = 0 = \partial^2 \mu_1 / \partial X_2^2$ at $X_2 = X_2^c$, and $\partial^3 \mu_1 / \partial X_2^2 \partial T > 0$ appropriate to a lower consolute. Then $\frac{\partial^2 \mu_1}{\partial X_2 \partial T} = -\frac{R_g}{(X_2^c)^2} \left[\frac{1}{X_1} - \frac{2}{X_1^c} \right] \rightarrow \frac{R_g}{(X_2^c)^2 X_1^c} \text{ at } X_c.$ Numerical evaluation (let component 1 be water), T = 33.2 C. and $X = X_c = 0.065$ lutidine:

$$MW_{1} = 18 \text{ g. mole}^{-1}$$

$$MW_{2} = 107 \text{ g. mole}^{-1}$$

$$\rho_{1} = 0.91035 \text{ g. cc.}^{-1}$$

$$\rho_{2} = 0.99467 \text{ g. cc.}^{-1}$$

$$\rho_{8} = 0.98852 \text{ g. cc.}^{-1}$$

$$\frac{\partial \rho_{8}}{\partial x_{2}} \simeq \frac{-0.00087 \text{ g. cc.}^{-1}}{0.0100} = -0.087 \text{ g. cc.}^{-1},$$

$$graphically$$

$$\Delta \overline{V}_{\text{mix}} = -0.504 \text{ cc. mole}^{-1}$$

$$R_{g} = 1.987 \text{ cal. C.}^{-1} \text{ mole}^{-1}$$

$$C_{p}, T, \overline{V}, \theta \text{ have been listed in section (A).}$$

$$\frac{\partial \Delta \overline{V}_{\text{mix}}}{\partial x_{2}} = -9.45 \text{ cc. mole}^{-1}$$

$$\frac{\partial^{2} \Delta \overline{V}_{\text{mix}}}{\partial x_{2}^{2}} = +7.09 \text{ cc. mole}^{-1}$$

$$R_{g} = -0.079 = -7.9\%$$

Part II: Chemical Theory of Solution Thermodynamics and of Ultrasonic Relaxation.

The thermodynamics of our lutidine: water mixtures, as of other aqueous amine or heterocycle solutions, points to strong A-B association through hydrogen-bonding. The phase behavior is affected: a lower consolute or critical mixing point is generated. The strong association equilibria also relax ultrasonically to yield a strong absorption. The latter effect has been studied by Andreae, et al.¹ with simple and not very successful models or chemical theories. and pointedly ignoring the former effect. The critical absorption phenomena have been studied only for upper consolute mixtures (with one exception), dominated by 'physical' rather than 'chemical' interactions of mixing. Our solution seems to be the first² calling for a careful modelling of both absorption effects in a common framework, to separate and interpret the effects which are of compared able magnitude in the critical region of interest. We have only limited guides in constructing such a theory; the chemical models of thermal relaxation are not very satisfactory as we have noted, and the models for the critical thermodynamics have been elementary physical solution theories (not beyond Flory-Huggins) used empirically, far from the more complex chemical theories. Our rather piecemeal attempts at the total theory are presented below.

Assume some model for the self-association of

water, and likewise for lutidine-water complexation:

$$A + A_{n-1} \rightleftharpoons A_n$$
$$B + A_n \rightleftharpoons BA_n$$

Each equilibrium is characterized by an equilibrium constant, enthalpy change, volume change, and (for relaxation) forward rate constant. Let us denote these for the association equilibria as K_n , H_n , V_n , and k_{fn} , respectively, and with primes for the complexation equilibria. With modern computers it is possible to solve for the 'true' species concentrations given a large but finite set of equilibria with an arbitrary progression of K_n , etc. with <u>n</u>, and from there to compute the net thermodynamic functions of mixing and the relaxation strengths, both as functions of the macroscopic composition as perhaps measured by the mole fraction $X_{\rm B}$. This reduces to an exercise in curve fitting with an enormous number of parameters. Our limited data on the phase diagram and on absorption do not justify such an exacting treatment, which is of limited interpretive value in any case. Our models are therefore limited to some simple progressions of the K_n , V_n , etc., such as the geometric one, $K_n = q_{n-1}$. We obtain low-order polynomial equations for the mole fractions δ_n , δ_B , and δ_{Bn} of the true species A_n , B, and BA_n , to be solved numerically for any composition X_B .

The molar free energy of mixing can be computed from the true species concentrations rather straightforwardly,

 $G_{mix} = RT[X_Aln \delta_A + X_Bln \delta_B]$, (II.10) under the assumption that the 'true' species form an ideal solution, in which case the activities of the monomers A, B equal the corresponding true mole fractions δ_A , δ_B . (A reasonable assumption to go with this is that the parameters K_n , etc. are independent of composition; this keeps things simple.) The condition for instability (immiscibility)

$$\frac{\partial^{2} G_{\min x}}{\partial X_{A}^{2}} < 0$$

maps the region of phase separation. The chemical terms above $G_{mix} = G_{chem}$ is not sufficient to cause such a condition, but it helps it to occur and partly determines the particular mole fraction whre it occurs.

Aside from phase behavior, our model must give the correct relaxation strength Zas a function of macroscopic composition X_B . For a single general reaction

aA + bB + ... **≑** cC + dD + ...

Herzfeld and Litovitz³ develop a relaxation equation. Let **5** define an extent of reaction from some arbitrary initial state and let its first order disturbance (from the ultrasound) be δ ;

$$\delta \mathbf{y} = \frac{\delta \mathbf{n}_{C}}{c} = \frac{\delta \mathbf{n}_{D}}{d} = \frac{-\delta \mathbf{n}_{A}}{a} = \frac{-\delta \mathbf{n}_{B}}{b} = \dots,$$

$$\mathbf{n}_{i} = \mathbf{n}_{0}, \text{ of moles of species i.}$$

Defining the forward and backward rate constants \tilde{k} and \bar{k} , they derive to first order (for the case aA+bB \rightleftharpoons cC+dD, to prevent ambiguity of expressions)

$$-\frac{d}{dt} \delta \mathbf{j} = \overline{k} (\delta^{0}_{C})^{C} (\delta^{0}_{\dot{D}})^{d} \left[\left\{ \frac{a^{2}}{\delta_{A}} + \frac{b^{2}}{\delta_{B}} + \frac{c^{2}}{\delta_{C}} + \frac{d^{2}}{\delta_{D}} - (\Delta n)^{2} \right\} \delta \mathbf{j}$$

$$-n \delta \ln K \right]$$

$$\Delta n = c + d - a - b$$

$$\delta^{0}_{i} = \text{equilibrium value of } \delta_{i}.$$
Since $\delta \ln K = \frac{\Delta \overline{H}}{RT^{2}} \delta T + \frac{\Delta \overline{V}}{RT} \delta P$, we can write this as

$$-\frac{\mathrm{d}}{\mathrm{d}t} \delta \mathbf{s} = \frac{1}{7} \left[\delta \mathbf{s} - \frac{\mathrm{H}}{\mathrm{T}} \delta \mathrm{T} - \mathrm{V} \mathbf{s} \mathrm{P} \right],$$

the general form of irreversible thermodynamics. Here

$$1/\tau = \overline{k}(\delta_{C}^{o})^{c}(\delta_{D}^{o})^{d} \oint /RT$$

$$\oint = RT \left(\frac{a^{2}}{\delta_{A}} + \frac{b^{2}}{\delta_{B}} + \frac{c^{2}}{\delta_{C}} + \frac{d^{2}}{\delta_{D}} - (\Delta n)^{2}\right)$$

$$H^{\dagger} = n \Delta \overline{H}$$

$$V^{\dagger} = n \Delta \overline{V}$$

and the relaxation strength is as usual

$$Z = \operatorname{Im} \mathcal{K}_{S}(\omega)$$

$$= \frac{(V' - \overline{V} \theta^{\infty} H')^{2}}{\overline{V} \phi \left(1 + (H')^{2} / \operatorname{TC}_{p}^{\infty} \phi\right) \left[1 + \omega^{2} T^{2}\right]}$$
(1.9)

For multiple equilibria, the coupling of the reactions (one reaction's product is another's reactant, as for the pair $A+A_{n-1} \neq A_n$, $A+A_n \neq A_{n+1}$) must be removed by taking appropriate linear combinations of reactions, 'normal modes' of reaction. Eigen and deMaeyer⁴ give the necessary linear algebra. The redefined equilibrium constants, volume changes, etc. can be solved for on a computer--or an analytic solution can be obtained if our choice of progression of

the elementary parameters K_n , ΔV_n , etc. is a lucky one.

The expressions for the mixing free energy and for the general relaxation strength are our mainstays in evaluating any model of the equilibria. We require three results for an acceptable model:

(1) Z, summed over the reactions and regarded as a function of the macroscopic composition, must have the correct peaking at $\underline{X}(\text{lutidine})\cong 0.1$, including width and height. Now, Z is hard to compute for the general case of coupled reactions. However, we do know that the principal contributor to relaxation is the complexation A-B, and not the water self-association, since pure water absorbs very little. If we assume the complexation reactions are all uncoupled, then at a frequency $f\ll 1/T_1$ for all T_1 such as we use,

$$\alpha/f^{2} \sim \sum_{n}^{\infty} Z_{n} \tau_{n}$$

$$= \sum_{n}^{\infty} \frac{(V' - \overline{V}\theta'' H_{n})^{2}}{\overline{V}\phi_{n}(1 + [H'_{n}]^{2}/TC_{p}^{\infty}\phi_{n})} \cdot \frac{1}{\overline{k}_{n}\delta_{Bn}\phi_{n}}$$

Under the reasonable assumption that for all <u>n</u>

 $V_{n}^{*} = V_{n}^{*}$ $H_{n}^{*} = H_{n}^{*},$

and noting that the parameters \overline{v} , θ^{\bullet} , and TC_p^{\bullet} are independent of <u>n</u>, the measure of α/f^2 simplifies,

$$\alpha/f^2 \sim \sum_{n} \frac{1}{\overline{k}_n \delta_{Bn}(\phi_n^2 + \text{ const. } \phi_n)}$$

At the end points $X_B = 0$ or 1, this can be shown to vanish

239

as it must; $\delta_{Bn} \phi_n \rightarrow finite limit, \phi_n \rightarrow \infty$.

Practical calculations are easiest and still accurate if we model $\bar{\nu}, \theta^{\infty}$, and C_p^{∞} as linearly varying with composition. The progression of \bar{k}_n with <u>n</u> must be decided upon. Two simple choices are that they are independent of <u>n</u> or that they follow the same progression as the k_n . Whatever the choice of progression, the sum over <u>n</u> in the ω/f^2 measure must be done numerically. Once a reasonable shape for α/f^2 as a function of X_B has been obtained by adjusting the model parameters, it remains to check the absolute magnitude of the calculated q/f^2 . While the absolute value can be changed by scaling the \bar{k}_n uniformly, they cannot be adjusted such that $\gamma_n \gtrsim 1/f_{max}$, where f_{max} is the upper limit of the dispersion-free frequency range--at least 13.5 MHz. in our system.

In our original calculations on all models, we used a simple and intuitive, but incorrect, measure of q/f^2 , namely δ_{AB} itself for the simplest case where B associates only with monomer water A. We therefore do not report our results in this regard. Our conclusions on phase behavior are still valid. The correct measure should be computed and evaluated for our models at some later date, and the problem of reaction coupling should be attacked.

(2) The free energy of mixing must generate a critical point at the proper low mole fraction $X_B = 0.065$. Let us define $\mathbf{z} = G_{mix}/RT$ and $\mathbf{z} = \partial \mathbf{z}/\partial x_A$, $\mathbf{z}^{uv} = \partial^2 \mathbf{z}/\partial x_A^2$. The critical condition is $\mathbf{X}^n = 0$ at some X_B . It is easy to derive that

$$\mathbf{x}^{\text{u}}_{\text{chem}} = \frac{2}{\delta_{A}} \delta_{A}^{\text{t}} + \frac{X_{A}}{\delta_{A}^{2}} \left[\delta_{A} \delta_{A}^{\text{u}} - (\delta_{A}^{\text{t}})^{2} \right] - \frac{2}{\delta_{B}} \delta_{B}^{\text{u}} \\ + \frac{X_{B}}{\sigma_{B}^{2}} \left[\delta_{B} \delta_{B}^{\text{u}} - (\delta_{B}^{\text{t}})^{2} \right]$$

where $\delta_A^i = \partial \delta_A / \partial x_A$, $\delta_B^i = \partial \delta_B / \partial x_A$, etc.

It is simplest to express everything in terms of δ_A and its derivatives, using the chain rules

 $\delta_{\rm B}^{\rm I} = (\partial \delta_{\rm B} / \partial \delta_{\rm A}) \delta_{\rm A}^{\rm I}, \ \delta_{\rm B}^{\rm I} = (\partial \delta_{\rm B} / \partial \delta_{\rm A}) \delta_{\rm A}^{\rm I}.$

Further, δ_A^i , δ_A^n , and $\delta\delta_B/\delta\delta_A$ are most compactly derived by implicit differentiation--of the polynomial equation for δ_A and X_A for the first two, and of the sum rule relation

$$\delta_{\rm B} = 1 - \sum_{n} \delta_n - \sum_{n} \delta_{\rm Bn} = 1 - \sum_{n} \delta_n - \delta_{\rm B} \sum_{n} K_n^{\dagger} \delta_n$$
$$\implies \delta_{\rm B} = (1 - \sum_{n} \delta_n) / (1 - \sum_{n} K_n^{\dagger} \delta_n)$$

for $\partial \delta_B / \partial \delta_A$.

To get a phase separation, we need to add \mathbf{U}_{phys} , some function of composition. Now, $\mathbf{U}_{chem}^{"}$ can bring $\mathbf{M}^{"}$ close to zero, and certain of the models favor smallness and flatness of $\mathbf{U}_{chem}^{"}$ at low X_B where we require it. A \mathbf{U}_{phys} of the simple form $AX_A^{n}X_B$ can then be added, which peaks at $X_B = 3/(n+4)$. For $X_c = 0.065$ to be generated, <u>n</u> has to be about 50, which is very unrealistic. \mathbf{U}_{phys} becomes a narrow spike. An inverse exponential such as $Aexp(a/(|X_B-X_c|+b)))$ might be more realistic. Any form, however, is hard to justify on any grounds over and above the phase behavior. Finally, we note that **X** phys may alter the activity coefficients of the true species, and the equilibria must be correspondingly adjusted.

(3) The net temperature dependence of X["] = X["] chem
 + X["] phys must give a lower consolute point,

 $\partial \mathbf{A}$ "(X_B)/ $\partial T < 0$.

The chemical equilibrium constants are all reduced by increased temperature, since the enthalpies of reaction are all negative. A_{chem} is consequently changed. In all our models, A_{chem} pulled <u>away</u> from zero at extreme mole fractions and bulged toward zero at intermediate X_B , as the temperature rose. To get $\partial A_{chem}^{"}/\partial I < 0$ at low X_B , the major temperature dependence must be in $A_{phys}^{"}$, which is surprising and discouraging. The model for A_{phys} becomes more arbitrary yet more important for properties. This difficulty is our principle one, as cited in paper II.

Before ending this Appendix by listing the key equations for three chemical models, we mention that two more thermodynamic criteria could be added: accurate predictions of volume and enthalpy changes on mixing, $\Delta \overline{V}_{mix}$ and $\Delta \overline{H}_{mix}$. We do not have any data on the latter for our system, but the former is modestly informative for lutidine: water. An extra use of the volume information is in setting \overline{V} for the complexation, for use in calculating the relaxation strengths, hence \propto/\underline{f}^2 . The detailed equations for computing \overline{V}_{mix} are developed as follows:

$$\Delta \overline{v}_{mix} = v^{E} = \overline{v}(x_{B}) - \overline{v}_{o}(x_{B})$$

where

 $\overline{V}_{O}(X_{B})$ = volume per mole of monomers, unmixed $\overline{V}(X_{B})$ = volume per mole of monomers, mixed.

In turn,

$$\overline{v}_{o}(x_{B}) = x_{A}\overline{v}_{A}(0) + x_{B}\overline{v}_{B}.$$

There is an X_B -dependence of \overline{V}_A because it self-associates, and even an inert diluent shifts the equilibria. Now,

$$\overline{\nabla}_{A}(0) = \nabla_{t}(=\text{total volume})/N_{t}(=\text{total no. monomers})$$

$$= \sum_{k} n_{k} \overline{\nabla}_{k} / \sum_{k} k n_{k} = \sum_{k} \delta_{k} \overline{\nabla}_{k} / \sum_{k} k \delta_{k}$$

$$\overline{\nabla}_{k} = k \overline{\nabla}_{0} + (k-1) \Delta \overline{\nabla} \text{ (for } \Delta \overline{\nabla}_{n} = \text{ const. } = \Delta \overline{\nabla})$$

$$\overline{\nabla}_{A}(0) = \overline{\nabla}_{0} + \Delta \overline{\nabla}(1 - \sum_{k} \delta_{k} / \sum_{k} k \delta_{k}) \equiv \overline{\nabla}_{0} + R_{0} \Delta \overline{\nabla}.$$

Similarly, for the mixture,

$$\begin{split} \overline{\mathbf{V}}(\mathbf{X}_{\mathrm{B}}) &= \mathbf{V}_{\mathrm{t}}/\mathbf{N}_{\mathrm{t}} \\ \mathbf{V}_{\mathrm{t}} \sim \mathbf{\hat{\mathbf{x}}} \delta_{\mathrm{k}} \overline{\mathbf{V}}_{\mathrm{k}} + \delta_{\mathrm{B}} \overline{\mathbf{V}}_{\mathrm{B}} + \mathbf{\hat{\mathbf{x}}} \delta_{\mathrm{Bk}} \overline{\mathbf{V}}_{\mathrm{Bk}} \\ \overline{\mathbf{V}}_{\mathrm{k}} &= \mathbf{k} \overline{\mathbf{V}}_{\mathrm{o}} + (\mathbf{k}-1) \mathbf{\Delta} \overline{\mathbf{V}} \text{, as before} \\ \overline{\mathbf{V}}_{\mathrm{Bk}} = \mathbf{k} \overline{\mathbf{V}}_{\mathrm{o}} + (\mathbf{k}-1) \mathbf{\Delta} \overline{\mathbf{V}} + \mathbf{\Delta} \overline{\mathbf{V}}^{\mathrm{t}} \\ \mathbf{N}_{\mathrm{t}} \sim \mathbf{\hat{\mathbf{x}}}_{\mathrm{k}} \mathbf{\hat{\mathbf{k}}}_{\mathrm{k}} + \delta_{\mathrm{B}} + \mathbf{\hat{\mathbf{x}}}_{\mathrm{k}} (\mathbf{k}+1) \delta_{\mathrm{Bk}} \text{.} \end{split}$$

Overall, V^E has the form

$$\overline{v}_{\text{mix}} = f_1(X_B) \mathbf{A} \overline{v} + f_2(X_B) \mathbf{A} \overline{v}'$$

 $\Delta \overline{V}$ should be set from the molar volume of pure water $\overline{V}_A(0)$, leaving $\Delta \overline{V}$ [!] to be set from the least-squares fit of our V^E function to experiment. We take $\overline{V}_O + \Delta \overline{V}$ to represent the molar volume of ice (totally bonded water), and $\overline{V}_O + R_O \Delta \overline{V}$ to be the molar volume of water at some moderately low temperature. Calculations of the enthalpy of mixing $\Delta \overline{H}_{mix}(X_B)$ follow the exact same outline, and use the same R_0 , $f_1(X_B)$, and $f_2(X_B)$.

The chained equilibria of association cause f_1 to peak at very high X_B . For the simplest model of complexation, that of A-B monomer association only $(K_n^*=0 \text{ for } n > 0)$, f_2 also peaks at large X_B . However $\Delta \overline{V}_{mix}$ peaks at $X_B \simeq 0.4$, so the simple model is unphysical for at least the excess volume behavior. The other models have not been examined for their volume predictions. Getting the phase behavior, absorption, and volume/enthalpy behavior to be satisfactorily predicted by any chemical model will no doubt be very difficult, if not impossible,

Details

The algebra of the mole fraction equations is very messy and difficult to do correctly, so we present the key equations for three chemical models as a time saver for any future work on these lines.

Model I:

$$A + A_{n-1} \stackrel{\stackrel{\scriptstyle \leftarrow}{\leftarrow}}{} A_n \qquad K_n = K = \delta_n / \delta_A \delta_{n-1}$$

$$A + B \stackrel{\scriptstyle \leftarrow}{\Rightarrow} AB \qquad K' = \delta_{AB} / \delta_A \delta_B$$

$$X_A = \frac{N_A}{N_A + N_B} = \frac{N \cot(\sum_n \delta_n + \delta_{AB})}{N \cot(\sum_n \delta_n + 2\delta_{AB} + \delta_B)}$$

$$= \frac{\delta_A \left[(1 + K') - 2KK' \delta_A + KK' (1 + K) \delta_A^2 \right]}{1 + 2(K' - K) \delta_A + (K - K' + K^2 - 4KK') \delta_A^2 + 2KK' (1 + K) \delta_A^3},$$

$$= \frac{\delta_A \left[a - b \delta_A + c \delta_A^2 \right]}{1 + d \delta_A + e \delta_A^2 + 2c \delta_A^3}$$

which reduces to the cubic form

$$(2cX_A-c)\delta_A^3+(eX_A+b)\delta_A^2+(dX_A-a)\delta_A+X_A=0.$$

Explicit forms for the solutions to cubic equations are available, as in the Handbook of Chemistry and Physics. Generally there are three real roots δ_A obtained, only one of which satisfies the constraint that all mole fractions δ_A , δ_B , and δ_{AB} be positive.

$$\begin{split} \delta_{B} &= (1 - [1 + K] \delta_{A}) / (1 - K \delta_{A}) (1 + K' \delta_{A}) \\ \delta \delta_{B} / \delta \delta_{A} &= - (a + b \delta_{A} + c \delta_{A}^{2}) / (1 - K \delta_{A}) (1 + K' \delta_{A}) \\ \delta_{A}^{i} &= - (1 + d \delta_{A} + e \delta_{A}^{2} + 2c \delta_{A}^{3}) / D \\ D &= X_{A} (d + 2e \delta_{A} + 6c \delta_{A}^{2}) - a + 2b \delta_{A} - 3c \delta_{A}^{2} \\ \delta_{A}^{i} &= - \frac{\delta_{A}^{i}}{D} [2(d + 2e \delta_{A} + 6c \delta_{A}^{2}) + X_{A} (2e \delta_{A}^{i} + 12c \delta_{A} \delta_{A}^{i}) \\ + 2b \delta_{A}^{i} - 6c \delta_{A} \delta_{A}^{i}] \end{split}$$

 $\varkappa_{\rm chem}$ is not very flat for this model for any moderate K, K', and $\delta_{\rm AB}$ peaks at $X_{\rm B}$ = 0.5.

Model II:

$$A + A_{n-1} \neq A_n \qquad K_n = K$$

$$B + A_n \neq BA_n \qquad K_n^{i} = K^{i}$$

$$X_A = \frac{(1+K^{i})\delta_A - K(1+K^{i})\delta_A^2}{1 + (2K^{i}-3K)\delta_A + (1+3K)(K-K^{i})\delta_A^2 + K(1+K)(K^{i}-K)\delta_A^3}$$

$$\equiv \frac{\delta_{A}[a - b\delta_{A}]}{1 + c\delta_{A} + d\delta_{A}^{2} + e\delta_{A}^{3}},$$

cubic if $K \neq K'$, quadratic if K = K'.

$$\delta_{\rm B} = (1 - [1 + K]\delta_{\rm A})/(1 - [K - K']\delta_{\rm A})$$

$$\delta\delta_{\rm B}/\delta\delta_{\rm A} = -(a - b\delta_{\rm A})/(1 - [K - K']\delta_{\rm A})^{2}$$

$$\delta_{\rm A}' = -(1 + c\delta_{\rm A} + d\delta_{\rm A}^{2} + e\delta_{\rm A}^{3})/D$$

$$D = X_{\rm A}(c + 2d\delta_{\rm A} + 3e\delta_{\rm A}^{2}) - a + 2b\delta_{\rm A}$$

A reasonable model.

Model III:

$$A + A_{n-1} \rightleftharpoons A_n \quad K_n = K$$

$$B + A_n \rightleftharpoons BA_n \quad K'_n = K' \propto^n$$

$$\delta_B = \frac{(1 - [1+K]\delta_A)(1 - \kappa K \delta_A)}{(1 - \kappa \delta_A)(1 + \kappa [K'-K]\delta_A)}$$

 $X_A \leftarrow \delta_A$ relation is <u>quartic</u>, unless $K = K^*$, which we promptly assume:

$$\delta_{\rm B} = (1 - [1+K]\delta_{\rm A})(1 - \kappa \delta_{\rm A})/(1 - K\delta_{\rm A})$$

$$X_{\rm A} = \frac{(1 + \kappa)\delta_{\rm A} - 2\kappa ((1+K)\delta_{\rm A}^2 + \kappa K^2(1+K)\delta_{\rm A}^3)}{1 - 2K\delta_{\rm A} + K(1 - \kappa + K)\delta_{\rm A}^2}$$

$$\equiv (\alpha\delta_{\rm A} + b\delta_{\rm A}^2 + c\delta_{\rm A}^3)/(1 + d\delta_{\rm A} + e\delta_{\rm A}^2)$$

$$\delta_{\rm A}^4 = -(1 + d\delta_{\rm A} + e\delta_{\rm A}^2)/D$$

$$D = X_{\rm A}(d + 2e\delta_{\rm A}) - \alpha - 2b\delta_{\rm A} - 3c\delta_{\rm A}^2$$

$$\partial \delta_{B} / \partial \delta_{A} = - (a + b\delta_{A} + c\delta_{A}^{2})/(1 - K\delta_{A})^{2}$$

also a good model.

We used two more models, one the same as model III but with $K_n^i = K^i \alpha^{n-1}$, and one with self-association of B. The former is not noticeably different from model III, and the latter is unrealistic for our system. References for Part II:

- 1. J. H. Andreae, P. D. Edmonds, and J. F. McKellar, Acustica <u>15</u>,74(1965).
- 2. The triethylamine: water lower consolute system studied by Brown and Richardson (Phil. Mag. <u>4</u>,705 1959) probably shows the same effects as our system, but it was not studied at compositions off X_c so they were not recognized.
- 3. K. F. Herzfeld and T. A. Litovitz, <u>Absorption and Dis-</u> <u>persion of Ultrasonic Waves</u> (Academic, N. Y., 1959).
- 4. M. Eigen and L. de Maeyer, in <u>Techniques of Organic</u> <u>Chemistry</u>, ed. Weissberger, <u>et al</u>. (Wiley, N. Y., 1962), Vol. VIII, Part 2.

General Acknowledgments

I would like to thank Tony Collings and Paul Morrison of this research group for many discussions on this research, particularly for much of the organization and most of the references in the introduction on liquid state theory.