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Diffraction Corrections

Much of this section is a rewrite or condensation

of extensive information in notebook 5090; ̂ 8 ff. We give

little text, so the presentation is somewhat rough, to keep

its size down. i

I  fil r
Geometry: U * —upper rod: vibrating as plane

^  I j 1 circular piston into semi-
I  I = infinite medium (no echoes
I  to reload it; no other

modes from

1..
samlple I MC)
med' lum ^ wavelength

r

a i
common axis

of transducers

Soimd pattern depends upon a/^, z/^, or aA, z.

In oxir system a is fixed, X ranges over ̂  discrete values

corresponding to the ̂  frequencies, and z varies continuous

ly from cs 0.6a to 7a. Compute average sound pressure on the

lower rod face <jP>av'

^P(z)^_^= , implicit function of aAj Q ^a

P(z,r) = 2,r), V ̂ velocity potential

^(z,r) e"^^jQ(sr)J^(sa) ̂
^ =Bessel function of order n

=sound velocity in medium

p. «(s^-k2)4
k apropagation constant =211A

From A. 0. Williams, Jr., J. Acous. Soc. Am. ̂ ,1(1951),

omitting many steps:
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and using integral representations of the
Bessel functions

Which reduces to Bass' final expression for <P(z)>^^ by-

multiplying by iwpQ* Our interest is in the ratio R of

to the perfect plane wave pressure ^Q(z)>g^y =

S l-I.

I has no closed form, Williams expands the inte

grand in powers of cos&, changes variables, and gets an

analytic form good for (^ka)/(z/a)^«2tf and (ka^)/z3«i. We
want to treat z/a^ 0.6 add kasf230-700, while Williams' ex

pression does not converge at the lower range of z/a.

Bass changes variables:

l! = I [(z2+ifa2)^-zj
= [(z2+ifa2oos2e)^-2j/ [(z2+Zfa2)4.zJ

'O w 2
where for compactness ̂ {^(J/ka) .

Now, integrals due~2^^"u'^(i^)^ can be expressed in
terms of a few Bessel functions, as by identifying the

integral with a confluent hypergeometric function
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(M. Abramowitz guid I, Stegun, Handbook of Mathematical

Punotions.N.B.S.. Washington, D.C,, 196k ; p. 505). -iAlso

Bass implies

Using Ijj = 2 recursion relations to reduce

all Bessel functions to J^, J^, we find

II = (argument of J implicitly Jr)

I3 e-^^[(3V+2ik^)V(6+'»i>-2>^)jJ

h = e"^^[(-12^-9l!r^+'t^^)Jo+(24+181^-11^2
-4l)r3)j^] .

We still have to expand the factor in the integrand

X  _ rl+tu

in polynomial form. Bass expands about u = 0, but this

won't converge for small z/a (largeoc). Instead we expand

ed about u = i arbitrarily and gathered powers of u. Terms

to u^ adequately represented f(u) in the important range z/a

;t0.5 for u in the range 0,1:

f(u)=£ (u-i)"
n=0

2  3
= A' + B'u + C'u +D»u .

Total integrand:
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g(u) = ̂ l+<(l-2u)] f(u) ̂  S
n=0

I -iC d«e(u)(Jj»)».-"V"
. 2 ̂  fl - n.l-Ux^ -2lku2. CnJ du u (—)^e >
^ n=0 •'0

Gathering terms in

B = l-I

where

and

and

+4^ ( |o3|V-j^(llOj^+8o3

+8c ifV®3'^®2"^2c)

Oq =(1-i»)A' / Cj =2*A'+(l-c«)B' / Cg =2<«B'+(1-k)C'

o, =2*C'+(1-<*)D' / Cj^ =2hD'

A' =A -|B + iC - D/8 B' aB - C + r D

c =c - -Id D' =D

A -Vo . -aW =

° " 8b5o7
and
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(ka) ̂; y = ̂  [(z^+4a^) ; z, k, a are given
in the dimensions of the problem.

The complex response ratio R is converted to an

effective db loss

|H| = = 8.686 InlRt .

a was computed for my system for a = 12.7 mm. (fixed), for

four frequencies f » ̂ .5> 7.5i 10.5j aad 13.5 MHz. { for k

values of propagation constant k, that is), and in tiim for

a grid of heifehts z (hence for J or»< ) from about 8 to 66

mm. in steps of 2 mm. (and later out to 80 mm.). Several

sound velocities were tried without changing the results

noticeably, so we settled on a standard ̂  of 1570 m./see.

The FORTRAN computer program to do the work is listed in the

pages stapled in notebook 5090: 52. Its input consists of:

the number of classes of velocity (and absorption—explained

later), and labels; number of frequencies and the a and

the grid of z^; absorption •<; and print option param

eters. It is extensively commented and easy to use. Our

results in Table IV check with Bass' for larger z/a. The

apparent loss factor ̂  was monotonic for all f in my range

of z, even at'i.very low z. This verifies that diffraction is

not the cause of signal oscillation with micrometer height,

and reinforces the judgment that mode conversion is the real

cause•

Bass notes that non-zero absorption o( can be
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accommodated in the formalism by makixig the propagation

constant k complex, k = 2if/}v-i«< (distinguish absorption oc

from o4=yV(ka)^ )• The goal here is to show that g from

diffraction is additive to absorption losses for all prac

tical purposes:

Q(«t,z):; gQ(z) +OCZ

Q(k,z)=: Qj^(z) + iCZ,

that is, that Si-Sq • wrote new routines to compute the

Bessel functions of complex argument ̂  . Rather than rewrite

in complex arithmetic the computing center routines which

are more general than we need, we noticed that ̂  is large

enough even at z/a as small as 0.5 (Rejt ranges from 35 tO

503 in our work) to use asymptotic expsnsions (Abramowitz

and Stegun, p. 36^):

These expansions are used with standard complex double pre

cision sin and cos routines, CDSIN, CDCOS.

Since cos z, sin z can be written as jCe^^+e*"^^),

(e^^-e"^^), the form of expression for
id

R (hence (RJ, S) seen as dominated by the lead term

1 for any complex z, if its imaginary part is
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small. Thus corrections from nonadditivity of diffraction

and true absorption require Im k ̂ o( to approach the order

of magnitude of Be k = which never occurs in our ex

periments. We proceeded with the calculations and obtained

results QjL(z) indistinguishable from Qo(^) (additions to

notebook 5090: 52). They are not reported in Table IV.
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Table I. Sample of Raw Ultrasonic Data

Order of data explained in text; formats given in program
I

listing

^4.66 A.5 JLll'yJJQ l}Y..V»'Gj _T.H IS <UN S rAR.T-S_rRA(LlM- OF. BEIA-AT^ A .5 M
HZ (JNLYi NEW WAY; 5 OH READING IN 3K0 RUN IS W/ FOUR LIU. CONTACT
_3
6

pq.nn ^7.q^ A7.?S S5.9S AA. R? 7^,.^
6

_29..J0..„ 3.a...3.7-_ifi. 3.Q_!i6.35_6i>.i3-(L J '> . Oa.„.
6

VL'00 38,09 A7.7? !>7.18 6fe.?2 H
1

.5
70.00 60.00 ^0.00 AO.00 30.00

"^oITzSb" LAST 7.i> MHZ BETA; SIGNAL UNSTEADY, ESF
. R PJ^W E E N 1 , Z OB . IN I ST__RUjN

2

IP
29.00 3A.HA A1.A5 A6.00 50.81 55.59 60.A6 6A.52 69.26 73.70

3i .T7~ 36."25 TdT87 46.~30 51.5? 56.32 60.80 65.29 70.40 75.00

5  5.00D-06

70.00 60.00 50.00 40.00 30.00
6'9.'o9 07.81 06.54 05.26 04.00
0.1238 34.66 10.530ArA 2/25/70 BY VPG

29.00 31.79 34.4H 37.20 39.97 43.83 45.50 46.00 51.06 53.66 56,2» >8.8JL_6?-«-01

31.53 -^4.36 36.81 39.76 4 2 .76„45 .5.8_^8.,3_9_5 1 .,13_.54 Ui_.16_a.Q.j5.9 .65,6^^^ ,00

0.1238 34.66 13.SSOATA 2/25/70 BY VPG; SIGNAL BOUNCE AT 5-6 OB 1ST RUNt_4-3 D
TTn 2NFirUN ; RETUNEO FCIR"2ND RUN

2

29.00 30.98 32.92 34. 87 35.76 3 7 . 58 39.84 41 . 34j»_3-a6-J>J. j._06 A 7,, 2 5_^07 _ 5 1.04

29.90 32.08 33.85 3 6.1^2_3 7.62 39.63 41.60 43
0

0.1238 33.46 13.53DArA 2/25/70 BY VPG; _____

29.00 30.99 32.86 34.77 36.77 38.62 40.49 42.43 44.26 46.15 48.11 49.99^L-'92
13

30.94 33.02 34.78 36.49 38.42 40.31 A2.25 44.16 46.16 48.14_5.QjJJ 52.06 54.00.
0

0.1238 33.46 10.54DArA 2/25/70 6Y_V^,j

13

29.00 31.93 34.67 37.21 40.34 43.07 46.30 49.15 51 .99 54.94 57.73 60.51 63.4.8,

30.44 33.26 36.19 38.84 41.74 44.62 47.55 50.58 53.34 56,34_^.J(LAT_.84 65,,00.
0

0.1238 33.46 7.54nArA 2/25/70 BY VPG; 9 08 IN 3RD RU'I UNUSUAL
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~3

10
29.00 34.03 3B.90 43.84

10

48.78 54.02 58.78 63.40 68.06 72.97

29.58 34.51 39.79 45.16

10

50.58 55.58 60.75 65.70 70.37 75.00

29.00 34.08 39.64 44.65

0

49.71 54.33 59.66 64.41 69.24 71.39

0.1230 33.46 4.52UArA 2/25/70 BY VfG

29.00 39.08 48.17 57.38 67.23

5  1

36.45 46.10 55.67 64.90 74.00

5

29.00 39.39 48.78 58.05 67.53

1

5  5.000-06
70.00 60.00 50.00 40.00 30.00

09.00 07.72 06.46 05.16

0.1238 32.66 4.520ATA

03.88

2/25/70 BY VPG; POOR T(ENCL.) CONTROL

29.00 39.07 49.37 5 .61 69.56

31.39 41.97 51.67 61.40 71.00

29.00 39.53 49.58 58.45 67.74

31.35 40.56 51.52 60.58 70.00

29.00 38.82 47.85 57.70 67.62

1

5.000-06

70.00 60.00 50.00 40.00

08.00 06.71 05.43 04.16

30.00

02.88

0.1238 32.66 7.540ArA 2/25/70 BY VPG; POUR r(eNCL.) CONTROL

2

10

29.00 34.12 39.34 44.45

9  I

49.54 54.67 60.92 64.56 69.60 74.91

34.13 39.16 44.21 49.36

0

54.64 59.71 65.43 70.54 75.00

0.1238 32.66 l0.54DArA

TO CORRECT DRIFT

2/25/70 BY VPG; POOR riENCL.) CONTROL; BATH TEMP. RcADJ

2

13

29.00 32.07 34.65 37.75

13

30.56 33.39 36.71 39.51

0

40.70 43.56 46.35 49.56 52.43 55.39 58.33 61.12 64.24

740 '5 1741 54 ."55"57.53 60.4y~637.4^ 6(fT.GO42.35 45.44 48,

0.1238 32.66 13.54DArA 2/25/70 BY VPG; POOR TIENCL.) CONTROL

2

13

29.00 30.70 32.51 34.38

13

36.24 37.95 39.82 41.63 43.59 45.58 47.55 49.47 51.30

30.42 32.36 34.12 36.04 37.90 39.70 41.67 43.46 45.35 47.31 49.15 51.10 53.00
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Table II. Ssunple of InltleO. Computed Absorptions, Velocities

Format: the headings over the columns of results are ex
plained below. The run conditions X, T, f listed in the
first three columns identify the total""set of ̂  and is data
following. Absorption data come first, then «t-averaging in
the same format. The velocity data are of slightly differ
ent format; most noticeably, the velocity value is printed
in floating point rather than integer format.

Absorption

X = mole fraction lutidine; T =* temperature (C.); f = fre
quency (MHz.)

N = for individual runs : no. of db readings =
for averaging : no. of runs =

oc o o</f^, in lo"^'^Np. cm."^ sec.^; error bound in per
cent (IOO^cVk); = (XV(N-P))8, N, P as in text

I « for individual runs : which point deleted by 3-<l test
for average of runs : which run deleted (never occurs)

0 is an indicator of type of fit done; C »

Ca« blank : linear fit or straight averaging
^ Q : nonlinear fit (individual runs only)

C„= blank : initial fit, all data points used
^  - : result of 3-d test; point denoted by I above

has been deleted

BEMARKS : xander individual runs, two types occur, and only
for runs with 3-d test deletions. •Preferred* means
this is the best deletion, giving lowest OC?; 'taken
auto'ly (ok)' means this is the latest deletion and was
automatically chosen by the briginal program for averag
ing—but it was not the best one; this is rectified by
hand later, as explained in the text.

under averages, the straight average with no dele
tions is the only one occurring. It is followed by the
value of the average error rescale parameter P for the
Njj runs in the particular average.

Velocity : exact analog of headings. Only one run is
made; no averaging is done. Just 3-^ testing; no error
rescale is comxnited.
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X T F N C cr*" I xh REMARKS

0. 1238 34. 66 4.5 1 6 585 2.03 0 0.36

-585 2.03 1 0.01 taken AUTO'LY (GK)

0 574 0.75 0 0.36 G=-0.07 EG=0.19

0-569 0.75 5 0.24 PREFERRED

6 571 2.03 0 0.33

-574 2.22 5 0.13 PREFERRED

0 564 0.74 0 0.36 G=-0.05 EG=0.20

0-570 0.77 5 0.14 PREFERRED

6 563 2.03 0 0.39

-563 2.03 7 0.14 taken AUTO'LY (GK)

0 547 0.70 0 0.31 G=-0.11 EG=0.19

0-547 0.63 2 0.25 PREFERRED

0-544 0.70 5 0.32 TAKEN AUTO'LY (OK)

3 573 1.21 0 0.93 AVG. ESCALE=0.32

5 1563.5 0.25 0 0.53

1560.0 0.35 5 0.13 TAKEN AUTO'LY (OK)

0.1238 34. 66 7.52 10 402 0.94 0 2.50

-415 1.10 1 1 .86 PREFERRED

0 347 0.31 0 1.21 G=-0.22 EG=0.06

0-348 0.29 3 0.79 PREFERRED

0-339 0.40 10 1.11 TAKEN AUTO'LY (OK)

10 406 0.94 0 1 .03

-406 0.94 5 1.11 TAKEN AUTO'LY (OK)

0 384 0.42 0 0.68 G=-0.09 EG=0.04

0-382 0.42 8 0.56 PREFERRED

0-381 0.56 10 0.69 TAKEN AUTO'LY (GK)

2 409 0.71 0 0.0 AVG. ESCALE=1.50

5 1569.4 0.25 0 0.76

-1564.8 0.35 5 0.34 TAKEN AUTO'LY (OK)

0.1238 34.66 10.53 13 376 0.66 0 1.61

-376 0.66 6 0.46 PREFERRED

13 365 0.66 0 0.67

-364 0.73 13 0.50 PREFERRED

2 370 0.49 0 0.0 AVG. ESCALE=0.48

0.1238 34. 66 13.53 13 347 0.65 0 2.08

-347 0.65 6 0.53 TAKEN AUTO'LY (OK)

0 366 0.86 0 1.97 G= 0.05 EG=0.03

0-368 0.80 4 1 .55 PREFERRED

0-365 0.88 12 2.05 TAKEN AUTO'LY (OK)

13 326 0.65 0 0.91

-325 0.67 4 0.63 PREFERRED

0 319 0.72 0 0.85 G=-0.02 £G=0.02

0-318 0.69 5 0.81 PREFERRED

0-317 0.76 9 0.85 TAKEN AUTO'LY (OK)

2 335 0.47 0 0.0 AVG. ESCALE=1.54

0.1238 33 .46 13.53 13 328 0.65 0 0.35

-328 0.65 6 0.85 TAKEN AUTO'LY (OK)

13 327 0.65 0 0.73

-327 0.65 4 0.25 TAKEN AUTO'LY (OK)

2 327 0 .46 0 0.0 AVG. ESCALE=0.57
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X T r N c n cr^ I KE'-IAKKS

0.1238 33 .46 10.54 13 356

-356

0.66

0.67

0

4

0.59

0.46 PREFERRED

13 357

-357

0.66

0.66

0

4

0.35

0.46 TAKEN AUTG'LY (OK)

0.1238 33.46 7.54

2

10

356

403

0.47

0.94

0

0

0.0

0.63

AVG. ESCALE=0.41

10

-403

385

0.94

0.94

4

0

0.46

0.98

TAKEN AUTG'LY (GK)

10

-381

402

1 .09

0.94

10

0

0.73

2.29

PREFERRED

3

-3 91

392

1.08

0.59

10

0

0.80

2.73

PREFERRED

AVG. ESCALE=0.72

0.1238 33.46 4.52 5 55 0

-561

2.68

3.78

0

1

0.43

0.17 PREFERRED

5 558

-569

2.66

3.75

0

1

0.47

0.32 PREFERRED

5 544

-561

2.68

3.77

0

1

0.65

0, 16 PREFERRED

3

5

563

1561.1

2.17

0.25

0

0

0.21

Oo 19

AVG. ESCAL£=0.23

0.1238 32. 66 4.52 5

1560.0

510

0.35

2.69

5

0

0.13

0.32

TAKEN AUTG'LY (OK)

5

-503

528

3.82

2.68

5

0

0.08

0.61

PREFERRED

-542

-516

3.78

3.81

1

5

0.30

0.43

PREFERRED

TAKEN AUTG'LY (GK)

5 539

-562

2.68

3.77

0

1

0.99

0.65 PREFERRED

5 535

-535

2.68

2.68

0

1

0.82

0. 17 TAKEN AUTG'LY (GK)

5 542

-540

2.68

2.85

0

2

0.26

0.16 PREFERRED

5

5

531

1564.0

1.46

0.25

0

0

1.14

0.77

AVG. ESCAL£=0.51

0. 1238 32.66 7.54 10

1568.8

385

0.35

0.94

1

0

0.34

1.09

TAKEN AUTG'LY (GK)

9

-387

381

0.96

1.08

7

0

0.46

0.58

PREFERRED

2

-378

383

1.28

0.77

9

0

0.41

0.0

PREFERRED

AVG. ESCALE=0.43

0.1238 32.66 10.54 13 350

-350

0.66

0.66

0

7

0.42

0.41 TAKEN AUTG'LY (GK)

13 344

-342

0.66

0.73

0

13

0.76

0.48 PREFERRED

0.1238 32. 66 13.54

2

13

345

335

0.49

0.65

0

0

0.0

0.83

AVG. £SCALE=0.45

13

2

333

334

0.65

0.46

0

0

0.3 1

0.0 AVG. ESCALE=0.63
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Table III. Final Computed Absorptions^,After Data Purging;^;

With Error Bounds (<^, in percent), €ind Chi-Squ8u?e
2

Confidence Functions ) on Errors

10"^^ Np. cm."^ sec.^

(or, 05^, %)

Xdutldlne) TiS^)
=k^ hi 10.5 I3t5 0^)

0.9901 32.65
33>7
3^. 66

(---)

69
69

(7.8)

76

(a!S

74
73
74

(1.6)

9
9
9

(0.37)

0AZ7 32.68
33.'^8
3k.68

82
82
94

(5.6)

91

11
(k.7)

86

U
(1.7)

87
86
88

(1.5)

22

22

21

(0.75)

0.3823 32.66
33.^5
3'J'.66

98
103
107

(5.8)

108
106
106

(3.7)

104
99
102

(1.2)

107
106
104

(1.1)

22

21

21

(0.^f9)

0.30'l-2 32.66
33. ̂̂6
3'f.66

IS
152

(2.7)

152
\kz
l'f5

(2.7)

146
143
I4l

(0.7)

137
140
139

(0.7)

24
24
23

(1.20)

0.2132 32.6k zko
236
Zk7

(2.6)

222

226
23'^
il.k)

210

222
218

(0.5)

208

212
208

(0.8)

23
22

21
(0.44)

0.1772 32.6'i' 319
3Zk
3ko

(1.2)

292
29't'
295

(1.5)

266
270
271

(0.5)

252
254
256

(0.7)

22

21

20

(0.54)

0.1238 32.66 J^88

51'<'
526

(1.6)

373
381
ifOO

(1.0)

327
337
352

(0.5)

315
309
317

(0.7)

19
19
18

(1.00)
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,  10"^'^ Np. om."^ sec.

Xdvitldtne) TIS^)
= ibi

(or,

7.5

^)

10.5 13.5

0.0892 32.66
33.48
33.84

564
594
600
(1.4)

426

459
458

(0.9)

341
350
356

(0.5)

290
301
306

(0.7)

17
16
16

1.12)

0.0722 32.66
33.44

515
559

(1.2)

445
491

(0.6)

339
348

(0.5)

267
276

(0.7)

15
15

(1.57)

0.0664 32.66
33 M

557
613

(1.2)

465
498

(0.6)

327
358

(0.5)

262
285

(0.7)

15
15

(0.66)

0.0614 32.64
33.'^5

486
524

(1.7)

430
431

(1.0)

304
317

(0.5)

238
254

(0.7)

1^
Ik

(2.58)

0.0436 32.64
33.46
33.84

371
406
415

(2.0)

313
340
345

(1.0)

229
241
241

(0.5)

180

185
187

(0.7)

11

11

11

(1.09)

0.0288 32.68
33.42
34.64

189
202

231
(3.2)

195
210

222
(2.6)

138
I4l
154

(1.0)

101

107
113

(1.1)

9
9
8

0.65)

0.0000® all 19 19 19 19 6

^quoted as » after subtracting and the mode
conversion correction

^see text on method of data-point deletion
^literature value, not our measurements
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Final Computed Velocities, After Data Purging®

"P , m. sec."l (error bound «L=0.35{, all)

(values at f=^.5 MHz. and underlined
values are most reliable)

f(MHz.) ibi 10^
X(lutidine) T(C.)

0.9901 32.65 13ZkA 1336.2 1330.0
33.4? 1326.9 132't.6 1331.7
34.66 1320.1 1324.3 1329.2

0.427 32.68 1478.6 1497.2 1495.5 1507.6
33.48 1489.2 1498.8 1495.8 1502.6
34.68 1489.1 1488.7 1493.9 1498.6

0.3823 32.66 1508.3 1507.8 1517.8 1520.9
33.45 1504.2 1499.7 15O8.3 1515.1
34.66 i499.9 1500.4 1508.8 1514.0

0.3042 32.66 1540.0 1529.2 1534.2 1527.8
33.46 1533.6 1532.9 1549.8 1527.9
34.66 1522.4 1526.3 1527.8 1544.8

0.2132 32.64 1549.9 1559.7 1569.8
33.46 1552.3 1*^65.0 1556.0 1574.1
34.66 1553.3 1547.8 1548.8 1559.8

0.1772 32.64 1564.0 1566.7 1573.1 1592.1
33.46 1567.6 1560.1 1569.1 1572.3
34.66 1567.0 I555t9 1563.5 1581.1

0.1238 32.66 1568.8
33.46 1561.1 , ,
34.66 1560.0 1564.8 4.5

-p MHz.
X  T p X I « 4/ only

0.0892 32.66 1558.8 0.06i4 33.45 1562.2
33.48 1559.9 .
33.84 1554.9 0.0436 32.64 156I.6

33.46 1556.7
0.0722 32.66 1567.0 33.84 1557.8

33.44 1560.6
0.0288 32,68 1562.2

0.0664 32.66 1565.8 33.42 1562.7
33.45 1566.3 34.64 1560.0

0.06l4 32.64 1565.2 (continued)
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'p , m. sec." (error bound bO.3^, all)

(values at f=4»5 MHz. and underlined
values are most reliable)

X(lutidine)

0.0000

f(MHz.) iLuS Xln'i
Tic,)

32. 1516.8 1525.3
3i4'.66 1518.6

benzene 32.65 1260.7

®'see text on method of data-point deletion



219

Table IV. Diffraction Corrections « QqCz) for

Our System, a » 12.7 mm., 1570 m./sec.

(Parameters in parentheses are the more general reduc
tions: a/j^ is given next to f, z>^next to Q itself)

f,MHz.
z.,mm\ (a/A) in decibels

8

10
12
Ik
16
18
20
22

2k
26
28

30
32
3^
36
38
kO
kz

k6
kQ
50

5k
56

I®60
62
6k
66
68
70
72
7k
76
78
80

MU6
0.255
0.286
0.313
0.339
0.362
0.38k
O.Wk
O.kZk
0.442
0.462
0.479
0.496
0.510
0.526
0.543
0.558
0.571
0.583
0.597
0.615
0.626
0.635
0.655
0.659
0.678
0.683
0.703
0.704
0.726
0.729
0.741
0.760
0.758
0.772
0.792
0.792
0.797

(^.9
(28.7
(34.4
(40.1
(45.8
(51.6
(57.3
(63.1
(68.8
(74.5
(80.2
(86.0
(91.7
(97.4
(103)
(109)
(115)
(120)
(126)
(132)
(138)
(143)
(149)
(155)
(160)
(166)
(172)
(178)
(183)
(189)
(195)
(201)
(206)
(212)
(218)
(224)
(229)

7.5(60.7)
0.198
0.222
0.243
0.263
0.281
0.298
0.314
0.329
0.344
0.358
0.372
0.384
0.396
0.408
0.420
0.434
0.443
0.456
0.464
0.474
0.486
0.497
0.506
0.515
0.523
0.532
0.543
0.55^
0.559
0.568
0.580
0.583
0.597
0.600
0.613
0.615
0.629

(229
(239
(248
(258
(268
(277
(287
(296
(306
(315
(325

(354
(363
(373
(382

10.5(84.9)
0.167

13.5(109.2)
0.148

0.188 0.165
0.206 0.182
0.222 0.196
0.238 0.210
0.252 0.222
0.266 0.235
0.279 •  0.246
0.291 0.257
0.303 0.267
0.314 0.277
0.325 0.287
0.336 0.296
0.346
0.357

0.305
0.314

0.366 0.323
0.375
0.384

0.331
0.340

0.393
0.403

0.347
0.355

0.411 0.362
0.420 0.370
0.427 0.377
0.437 0.386
0.445 0.391
0.451
0.458

(388)
(401)

0.399
0.405

0.466 (415) 0.413 (533)
0.473 (420) 0.420 (550)
0.481 (441) 0.425 (568)
0.490 (455) 0.431 (585)
0.498 (468) 0.437 (602)
0.503 (482) 0.443 (619)
O.508 (495) 0.449 (636)
0.517 (508) 0.455 (654)
0.525 (522) 0.462 (671)
0.528 (535) 0.469 (688)
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Appendix V. Details of Theoretical Interpretation of Ultra

sonic Results.

Paper I developed and extended Pixman's theory for

interpreting critical region sound absorption in molecular

terms, beginning from a general framework of irreversible

thermodynmaics. Paper II presented the ultrasonic results

for our binary system, which gave clear indications of an

additional absorption from thermal relaxation. It also out

lined the two-part (critical ̂  thermal) relaxation theory we

developed thermodynamic€^.ly to analyze our results quantita

tively. Paper II finally presented our analysis, limited

to the critical absorption only by fundamental theoretical

obstacles. In this Appendix we give the details of our gen

eral theory and of the data interpretation, for the record

as well as for einy future work toward a useable total

theory. First we give more details in Fixman's theory of

critical absorption. Then we give details of the chemical/

physical models for thermal relaxation and for solution

thermodynamics. The thermodynamics could have been a uni

fying link between critical and thermal relaxation mecheui-

isms, but it failed.

(A) Reduction of to the molecular param

eters h, 1^ or Jr,l^:

—(1) Form of from Fixman theory (equation

numbers not of the form V.XX refer to our papers I or II, or
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to Fixraan's paper on «<, ref. 5 of paper I):

(1.38)

Ajj 9 A , A a heat capacity/unit vol •,
nj^+ng

riys moles/unit vol.

Prom (1.33) and (1.3^):

A - ̂ (Te^)2 I
® bT

I » f dkjLi
(k^+K^)(lw + hk2fic2+:j{-2j)

Change variables: x = k/|^ , d "K^(h/o>)® ; (V.l)
I » l{3_ f_dx_x^

a> ) \ l+x^) (-id~2+x^ )

•^ex/^^ it (T Im f(d) + B(X,T,f)(ni.n3)2l3C, ^
(V.2)

B(X.T.f) represents TR; nesu? and at our low
frequencies, its X- and f-depehdence ̂ e weak, and its T-
dependence is weak relative to > B —const.

We see "fig/f^ to be a function of the bulk, 'stat
ic* parameters to, n^, C^, C^,13 , T^, and also of the two
microscopic parameters 1^ (since hfi^/ » 6/1^) and R

(d in f(d) is a function of to, l^, and h also).

— (2) To develop a bookkeeping for fitting

to our data, define
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+ B (V.3a)
6«}L

d = CjT-l^lf-^ . (V.3b)

Results of the fit to the data, which is a nonlinear fit in

Cq, linear in A, B:

C  was scanned to minimize the residual error of the
o

linear fit. Eight data points were fit, four f at each of

two T. For Cq « 0.2 (f in MHz., o(/f^ in 10*"^'^ Np. cm.*"^
sec.^), the error was minimized on a crude grid. The error

was insensitive to C^, however. There was a consistent

localization of the total error in the f » 7.5 MHz. points,

the computed values always being lower; Eq. (V.2) gives a

poor shape for ̂ f^ vs. f. JKd) was nearly constant over

the d-range we sampled in our 8 data points, so essentially

predicted.

—Adjustment of T^ was tried, with little result. This

is as expected, since it only changes d values, to which the

fit is insensitive.

—Separate fits of the four f points were tried for

each of the two T; only one degree of freedom is left in

both fits. Results are poor; the B term was negative for the

best fits, attempting to smooth the poor shape of

with f.

—Finally, we gave B a temperature dependence, a T-

coefficient of +3^ deg."^ to -95? deg.~l, with little effect
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(Cq changes but the net error is relatively unaffected),

since it does not change the problematic f-dependence of

Selecting = 0.20

= 2.0x10^ sec."^C.-l,

the corresponding A, B values are

B » 2Q1 (x10""^7np. cm,"^sec.^); very reasonable

A s= 7.0x10^ (xlO"^^Np, cm.^^sec.^MHz."^/^)

= 2.2x10"^ cm."^sec.^'^^; about 0,1 of the value
for nitrobenzene: isooctane; reasonable.

Reduce to the molecular parameters: compar

ing Eqs. (V,2), (V,3a), we see

A = (2lt)"^^^(yo-l)kfa^ )2
2pCp(nj^+n2) ®

and comparing Eqs. (V.l), (V.St) and using 6|T-Tg|/1^,
Cq = (2if)~^6_h^

*

Now factor all the fixed macroscopic pau:»ameters from the A,

2
Cq expressions, leaving only powers of h, 1 :

A  Co =ehVl2
0,= ̂ 6(2flr^/\ro-i)k

a-pCpCn^+n^)

e- (zitrh/T^,
Reduce the data to Cq/C = C = h^/1^, A/Q,®' A => and

2
get h, 1 as

h = (TT^/TT 1^-

—(if) Evaluate a,C; need w, k, (Cp-Cy)/CY,
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——1
n«+n2= V , and T^jtake component 1 as water):

Tg = 306.7 K.

= 7.80x10"3 k~1

« 1566 m. sec. , measured

Cp, —not measured Independently; estimate Cp

from the pure fluid values

1  2 2
"^^2^0 » estimated from other pyridine,P  P ^ P P heterocycle Vfidues

= 0,935(18 cal.C."^mole~^)+0.065(50 cal.C-^
-  mole"^)

« 20 cal. C."^ mole"

and get from Cp-C^ = TV^l<^, notation of paper I:
e = -(9p/6T)/p2'-(A(o/AT)/p

For our mixture at X^, between T = 32.65 and 3^*65 C.,
our initial p<">X data give p = 0.98900, 0.98759:

ea7.1x10"''' C."^
— 2Hrjt also was not measured; use + TV© /Cp

= l/pp?, p = 0.98900x10^ kg. II1.-3
= 0.^3x10"^ nt."^m.^

V = Xj^MMj^+XgMWg

^^soln.

= 0.065(107) + 0.935(18) cc. mole"^
0.969

an 2^,1x10"^ m.^ mole"^

T
^ 0.^58x10"*^ nt."^ m.^

Cp-C^cl.9^ cal. C."^mole"^
Yq-i = 0.107

CL = 0.^91x10"^^ m.^molecule"^sec.

A a A/CLa ̂ .^7X10^^ m. "^sec."^molecule
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C = Cq/C b 2.56x10^860.""^
h B 1.66x10^^ X^sec."^; reasonable size of pair

diffusion constant

l^B 50.5 X^; reasonable in comparison to other
systems

These values are not final; they are adjusted for Pixman's

oversightp as noted in paper I.

—(^) Reduce h further, to a molecular friction

constant as does Fixman (his ̂  ), from his £q. (i<.5)!

h B (n^+ngjV^ 5
m^Cg-RilaJ;

in molecules/unit vol.

in vol./molecule

02 = weight fraction of component 2 (lut.)
Vj^B 18.07 CO. mole"^ b 3.00x10"^^ cc. molecule"^

^1® ̂ 1^1
niB fi 2Ll a 0.0376 moles cc."^

^j^B 0.680
C2« XgMWg/CX^MW^+XgMWg) B 0.708
>1 cs if8.8xl0~^^ m.\olecule"^ sec."^

H a h/'H = 3.^x10*"^^ A~^sec.

aV = l/H « 2.9^xlO^^X sec."^
2

Now, Fixman derives a b from the Florv-Huggins

model; q
a B 1.84 A; very low compared to other consolutes

y B 1.6x10^^ sec."^; small; corrected to 0.32 in
paper II, for Fixman*8 oversight.
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(B) Derivation of Correction Factors for 1,) from

Pixman's original results, due to Pixman*s oversight in the

form of f(d)—faulty translation of singlet—> pair diffusion:

Pixman derived a pair diffusion equation for G(r)

or its Fourier transform (Eq. ̂ 0, viscosity paper), lead

ing to our Eq. (1.33). The diffusion constamt h appeeu^s in

two places in the incremental heat capacity (or ««, —

as a factor in the numerator, and buried in the denominator

of the integrals I or f(d). But we showed in our redevelop

ment that h should be replaced by h/2 in the latter place.

We indicated that this requires adjustment of Pixman's l,Jr

by 1.26, 0.20, respectively. We derive these factors here:

Proper form:

_  . _;2
' ° dT

A- ̂  ̂  )2 j,

I' = fdk k'*'
(k2+ 2)(iw+ |^k2Qc2+/{2J)
h* is the proper diffusion constant

Performing the change of variables

X = k/i^, d =/f^(h'/2a>)^, similarly to before,
we get i

h

with f(d) the same mathematical form as before. Thus in our

forms rf/f^ s +,B, d = Cof-i|T-Tji, we have really
A = 2^/V(h')*/(l')'*
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C = C.2-^(h')V(l')^

h» = ^old

=«^Jf' = 0.20

1« = = 2^/3 = 1.26

(C) Proving Pixman's expression for the diffusion

constant h,

h = kT^iVfCni-t-n^)
®lC22rtSa>

There are some difficulties in verifying this relation: 1)

Pixman commonly does not label the variables held fixed in

his partial derivatives; 2) he changes notation in transit,

or makes errors in notation corrected implicitly in later

papers; 3) he sometimes uses approximate equalities in deri

vations but quotes them as equalities; ?These three problems

plus the spreading of his total derivation over k papers are

great obstacles to following his line of reasoning. We have

corrected some implicit assumptions of the types above in

our paper I, but we still have to verify the above equation.

The diffusion equation outside the critical region

(1.12) has a diffusion constant

D =s ftCb^Li/^Cg) (1)

which is retained in the critical region (only the driving

terms are altered) but written as

D = ̂  2
2  •
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Clearly,
h = ̂  )

0C2 P,T

and from this we must derive Eq. (c(.5). Let us reduce Eq,

(1). First, we take, as does Fixman, C2 to be the mass frac

tion of component 2. Correspondingly, is the difference

in chemical potentials per unit concentration

Fixman later uses )x^ as the chemical potential per molecule,

we must convert

d^ = dyL2M2 "

By the Gibbs-Duhem relation, and constrained to

vary as
nid^l + n^c^^ = °

n2min.2 ^ '

°  ,¥1.
®2®i®2 P,T .

— Now, in his viscosity paper, Fixman derives a

relation (Sec. A) between as easil^
and the microscopic parameters a and /f , through the rela-

and thus

tion of osmotic pressure lL and the correlation function

'  W ■ >« fl ♦ "2 K2<'I
=  Sp
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He uses a Maxwell relation

fdV . 6u-(dN,)p.T.N2 (^)t.Ni,N2

and an assumption of small compressibility of the mixture,

^T,Ni,N^'dp ^n2,T " "^1
to get

hit ^ - 1__ bpi

Now, in the critical region, according to the Omstein-

Zernike model of classical thermodynamics,

rG22(r) ai* = 'Wa/Zf 2

4na Vi pM + 1 "I
IF ° ~ ™2 LWiT^) fjJ. (1.26)

The second term in brackets is negligible relative to the

first when -^0, as in the critical region —imless

we are trying to get the dependence of absorption on compo

sition away from (Puls' thesis, e.g.). Thus

hxii ̂
6n2 ~ idlfflig
—We must put this in terms of

^ . ,Vlw.^°2,d02- <^>Wv *

The chain rule is justified, since Cg (with P, T) is a com

plete description. We need a condition on the latter

p€U?tial to reflect the P, T constancy, and we choose dVssO

(low compressibility; also consistent with relation I.l?
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between So and ) 5

dOg = /^£2) an- + /^°2\ ano
^35i'ni ^

og = n^m2 ^og „ _

^®2 - "l®l®2
v~  2' —dng (3^

dCo « rnim^r

-  - VodV = Vj^dn^ +V2dn2 dn^ « - _

dC2 = mj^m2 rngjtg.>4iqir^ ̂
L  Vi J 2

^02 "i^z _ ®1°2
'dng^V = p2v^ " pv^ng

Thus

^1 ̂  pVl>t2 ■
^02 »i®2 imMg

D = «tp2
n^mJSS i^j^CgiMla

h = tpVi^kT

Pixman uses an intermolecular friction constant

y in preference to «, converting through an ideal diffusion
constant In Sec. VIII in his viscosity paper, he der

ives a rigorous relation
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^id ^ ^ In X2^ = oif>)sT
^*^2 V ^X^Z^TO-xT^z ̂ ̂ i*'^z ̂ ̂ 1

and then defines

If s M
®2°icl

< = inim2\n2(n^+n2)Vi ^
fkT

= m^mgn^ng(n^+n^)Vj^

h =)^^kT nj^+ng) V.
K^i^Ogaifa ^

and using we get

m^C22!tfaJ y Q • £ • D •

(D) A Comment on Fixman's choice of the dissipa-

tive equation and its driving force: Pixman's esu-lier papers

on general critical region thermodynamics and on ultrasonic

attenuation focus on the equations of motion for the singlet

and pair densities, rather than the singlet and pair concen

tration deviations. The latter obey a purely dissipative

equation, modified from the standard non-critical diffusion

equation; the choice of thermodynamic description for the

entropy production and the choice of driving term are well

justified. The density equations of motion, on the other

hand, su*e mixed propagative-dissipative and encompass the
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smomedous entropy production or sound absorption only for

the gas-liquid critical point, suid then in a non-obvious

way. Pixman*s first attempts to describe the liquid-liquid

critical absorption failed for this reason.

(E) Estimation of the pressure-driven contribution

to the critical absorption, relative to the thermal absorp

tion: The 6t term in the driven entropy fluctuation, hence

in gt, originated in the derivative

,6T -
'2 ^

where Gmix the free energy change for an arbitrary mass

of solution and the are total numbers of moles (or mole

cules, if one prefers). Theaanalogous 8P-driven term is

proportional, with the same constant of proportionality, to

bPdcadNi ~ d02 ̂  N2 A
The derivative (8/dN^)jj2 factors as

/  d X - f—\ ( b \dNj "2 ^dN^^N2(SN)x2^^N2(oX2 N
N = N^+Ng

=/ _ Xp, b0\ - X2/ d .

and cleauply ^^\ix> where the bar denotes the molar

quantity. Then the 8p term measure becomes, for C2= X2,

^ ̂'^mix ^
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Xj^MWj+XgMWg X^MWj^ XgMWg
Fs Ti W

= (MW^-MWj^) AV„ix
6X2 Ps fs 0X3 Pz Pi

p^2(^W). .(mM2-MWi)(^) -P3(1^!S12)(Jp8)
8X3 8X3 0X3 ^

8X3

The ratio E of the pressure-induced to the temperature-in

duced absorption is

„  r£AVmix ^

( S^^^/dTiyXg) Tve

since for Ss - 0, ̂  5^ _ ^^3^ ̂
T

A modified Plory-Huggins model will be used for the term

terms of mole - fractions rather than volume

fractions:

Vi M-
8X3 (X3°)^ ̂  _

2., /w 2

Pi- - 2—+ 'gc Xi •)
[Xi T (x,C)2j

which la a form satisfying 8;xi/dX3 = 0 = 6 >1/8X3'^ at X3=X3°

and &^</dX3 dT>0 appropriate to a lower consolute. Then

M -ixi x^J8X38T (X2®)21Xi OT (X °)2x ° ®
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Nximerical evaluation (let component 1 be water), T = 33,2 C,

and X = = 0.065 lutidlne:

MWi = 18 g. mole"^

MWg « 107 go mole"^
= 0.91035 g. 00."^

P2 = 0.99^67 g. cc."^
pg = 0.98852 g. 00."^

"P*0Q087 gn cc, ̂  63 -0.087 g. 00.*"^
^ - 0.0100 »

graphically

^Vjjjix® -0.50^ cc. mole"^
Rg= 1.987 cal. C."^ mole"^
Cp, T, V, 0 have been listed in section (A).

£8 -9.i|'5 cc. mole^^^mix jg, .9^/1,5 CO. mole""^
6X3

1
Si2 a +7.09 cc. mole"

= 503 oal. C."^ mole"^

H o -0.079 = -7.9%
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Part II: Chemicsa Theory of Solution Thermodynamics and of

Ultrasonic Relaxation.

The thermodynamics of our lutidine: water mix

tures, as of other aqueous amine or heterocycle solutions,

points to strong A-B association through hydrogen-bonding.

The phase behavior is affected: a lower consolute or criti

cal mixing point is generated. The strong association

equilibria also relax ultrasonically to yield a strong

absorption. The latter effect has been studied by Andreae,
1

et al. with simple and not very successful models or chem

ical theories, and pointedly ignoring the former effect.

The critical absorption phenomena have been studied only

for upper consolute mixtures (with one exception), dominated

by 'physical* rather than 'chemical' interactions of mixing.
2

Our solution seems to be the first calling for a careful

modelling of both absorption effects in a common framework,

to separate and interpret the effects which are of comparwb

able magnitude in the critical region of interest. We have

only limited guides in constructing such a theory; the

chemical models of thermal relaxation are not very satisfac

tory as we have noted, and the models for the critical

thermodynamics have been elementary physical solution theo

ries (not beyond Plory-Huggins) used empirically, far from

the more complex chemical theories. Our rather piecemeal

attempts at the total theory are presented below.

Assume some model for the self—association of
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water, and likewise for lutldlne-water complexatlon:

A + An_i sA

B + .

Each equilibrium is characterized by an equilibrium constant,

enthalpy change, volume change, and (for relaxation) forward

rate constant. Let us denote these for the association

equilibria as and respectively, and with

primes for the complexation equilibria. With modern comput

ers it is possible to solve for the 'true* species concen

trations given a large but finite set of equilibria with an

arbitrary progression of etc, with n, and from there to

compute the net thermodynamic functions of mixing and the

relaxation strengths, both as functions of the macroscopic

composition as perhaps measured by the mole fraction Xg.

This reduces to an exercise in curve fitting with an enor

mous number of pau*ameters. Our limited data on the phase

diagreun and on absorption do not justify such an exacting

treatment, which is of limited interpretive value in any

case. Our models are therefore limited to some simple pro

gressions of the Kjj, etc,, such as the geometric one.

We obtain low-order polynomial equations for the

mole fractions <Sg, and Jg^ of the true species Aj^, B,

and to be solved numerically for any composition Xg.

The molar free energy of mixing can be computed

from the true species concentrations rather straightforward-

Gmix ® RT^X^ln 8^ + ^3 » (11,10)
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imder the assumption that the 'true* species form an ideal

solution, in which case the activities of the monomers A, B

equal the corresponding true mole fractions 6^, 6g, (A

reasonable assumption to go with this is that the parameters

etc. £u?e independent of composition; this keeps things

simple.) The condition for instability (immiscibility)

dXr"^'A

< 0

maps the region of phase sepeu?ation. The chemical term:;

above Gmix = ̂ chem sufficient to cause such a con

dition, but it helps it to occur and partly determines the

particulsur mole fraction whre it occurs.

Aside from phase behavior, our model must give the

correct relaxation strength Z .as a function of macroscopic

composition Xb« For a single general reaction

aA + bB + ... ̂  cC + dD + ...

Herzfeld and Litovitz^ develop a relaxation equation. Let

define an extent of reaction from some arbitrary initial

state and let its first order disturbance (from the ultra

sound) be &J>,

Sjr ® ^ ~ ""^^A ~ ~ • • • >
c  d a b

n^ = no. of moles of species 1.
^  —

Defining the forward and backward rate constants k and k,

they derive to first order.(for the case eUl+bB^cC+dD, to

prevent ambiguity of expressions)
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,2

-ft -(An)|f^

-n Sin kJ
An = c+d-a-b

SJ = equilibrium value of S^.

Since S In K a St + — &P, we can write this as
BT^ RT

d

Idt SV = ̂  [5!t - - v'SpJ^
the general form of irreversible thermodynamics. Here

lA = k(6g)°(8g)'^#/ET
f  = HT (f2 + ̂  + -Un)2)

"A "B "C

H« = nAH

V* = nAV

and the relstxation strength is as usual

Z a Im

(v'-v9°oh')^ ii»y- (1.9)
° W Cl+(H')2/TCp^]tl*''®**'' J

For multiple equilibria, the coupling of the reactions (one

reaction's product is another's reactant, as for the i)air

A+An.i7rAn, A+Aj^-^A^+i) must be removed by taking appropri
ate linear combinations of reactions, 'normal modes' of

k

reaction. Eigen and deMaeyer give the necessary linear

algebra. The redefined equilibrium constants, volume chan

ges, etc. can be solved for on a computer—or an analytic

solution can be obtained if our choice of progression of
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the elementary parameters AV^^, etc. is a lucky one.

The expressions for the mixing free energy and for

the general relaxation strength are our mainstays in eval

uating any model of the equilibria. We require three

results for an acceptable model:

(1) Z, summed over the reactions and regarded as a

function of the macroscopic composition, must have the cor

rect peaking at X(lutidine)af0.1, including width and height.

Now, Z is hard to compute for the general case of coupled

reactions. However, we do know that the principal contrib

utor to releocation is the complexation A-B, and not the

water self-association, since pure water absorbs very little.

If we assume the complexation reactions are all uncoupled,

then at a frequency f«l/'T^ for all such as we use.

.«/f2 ~ ̂
? (v'-ve"HA )

ir/n(l+CH'n3VTC-#n)
'Bn

Under the reasonable assumption that for all n

V* a V*
n

and noting that the parameters V, 0^ , and TC^ are independ
ent of n, the measure of «^f^ simplifies,

-=-T—7T^ 7"
n \"Bn(^n^+ const, ̂ n)

At the end points Xg = 0 or 1, this can be shown to vanish
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as it must; finite limit, oo .

Practical calculations €U*e easiest and^^still accu

rate if we model V,e^, and Cp as linearly varying with
composition. The progression of with n must be decided

upon. Two simple choices are that they-are independent of n

or that they follow the same progression as the What-
2

ever the choice of progression, the sum over n in the 4^/f

measure must be done numerically* Once a reasonable shape

for */f^ as a function of Xg has been obtained by adjusting
the model parameters, it remains to check the absolute mag

nitude of the calculated o*/f^- While the absolute value

can be changed by scaling the uniformly, they cannot be

adjusted such that l/fmax» where f^^^^ is the upper limit

of the dispersion-free frequency range—at least 13.5 MHz.

in our system.

In our origin€d calculations on all models, we

used a simple and intuitive, but incorrect, measure of «(/f^,

nsunely 6^ itself for the simplest case where B associates

only with monomer water A. We therefore do not report our

results in this regard. Our conclusions on phase behavior

are still valid. The correct measure should be computed

and evfiiLuated for our models at some later date, and the

problem of reaction coupling should be attacked.

(2) The free energy of mixing must generate a

critical point at the proper low mole fraction Xg«0.065.

Let us define <1= ̂ mix/^^ ^M/Ax^, H."
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The critical condition Is at some It is easy to

derive that

-ti _ 2 . ^aFa am /Xi\2l ^*i"chem= I ^

Ob^

where 5^ = &6^/dX^, 8g = ̂ Sb/^a*

It is simplest to express everything in terms of 8^ and its

derivatives, using the chain rules

Sg = (38g/b8^)5^, ̂ g = (38g/d5^)5^.

Further, i^, 8^, and d8g/d8^ are mcBst compactly derived by

implicit differentiation—of the polynomial equation for

and for the first two, and of the sum rule relation

ig = 1 -28n "^^Bn ~ ̂  "^^n ~
n  n n n

==? Sg = (i-£5„)/(i-21k^8j^)
n  n

for 35b/35a'

To get a phase separation, we need to add ^pj^yg*
some functixm of composition. Now, can bring

close to zero, and certain of the models favor smallness and

flatness of 4chem ^e require it. A ttpj^yg
of the simple form AX^^g can then be added, which peaks at

^B ® 3/(n+^). For X^= O.065 to be generated, n has to be

about 50, which is very unrealistic, ^p^ys t)ecomes a narrow
spike. An inverse exponential such as Aexp(a/( iXg-X^I+b))

might be more realistic. Any form, however, is hard to

justify on any grounds over and above the phase behavior.
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Finally, we note that -tlp^ys alter* the activ

ity coefficients of the true species,and the equilibria must

be correspondingly adjusted,

(3) The net temperature dependence of A"= A" chem

+ J(l"phys must give a lower consolute point,

c^/t"(XB)/6T< 0.

The chemical equilibrium constants are all reduced by in

creased temperature, since the enthalpies of reaction are

all negative. ><lShem consequently changed. In all our

models, 41 pulled away from zero at .extreme mole fractions

and bulged toward zero at intermediate as the tempera

ture rose. To get <0 at low Xg, the major

temperature dependence must be in ^Ipjiygi which is surpris

ing and discouraging. The model for p^ys "becomes more

arbitrary yet more important for properties. This diffi

culty is our principle one, as cited in paper II.

Before ending this Appendix by listing the key

equations for three chemical models, we mention that two

more thermodynamic criteria could be added: accurate predic

tions of volume and enthalpy changes on mixing, and

^mix' latter for our sys
tem, but the former is modestly informative for lutidine:

water. An extra use of the volume information is in set

ting V' for the oomplexatlon, for use in calculating the

relaxation strengths, hence oc/f . The detailed equations

for computing developed as follows:
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A^mlx= - Vo(Xb)
Where

VqCXb) = volume per mole of monomers, unmixed

V(Xb) = volume per mole of monomers, mixed.

In turn, _ _ _

Vb-
There is an Xg-dependence of because it self-associates,

and even an inert diluent shifts the equilibria. Now,

V^(0) a Vj^(=total volume)/N^(«total no. monomers)

\ = kv^ + (k-l)AV (for const. a|S?)
v^(0) = V AV(l-2Sjj/Xk5j^) S Vo +

k  k

Similarly, for the mixture,

V(Xb) = Vt/Kt

■'■^^Bk^Bk
Vjj = kVg + (k-D# , as before
Vfik® * (k-DAV + AV'

+ 63 +;S(k+i)SBk .
K  A

Overall, has the form

W fi(XB)AV + f2(XB)AV'.
AV should be set from the molar volume of pure water V^(0),
leaving AV* to be set from the least-squau?es fit of our

function to experiment. We tsike + AV to represent the

molar volume of ice (totally bonded water), and Vq+R^AV to
be the molar volume of water at some moderately low tempera

ture.



Calculations of the enthalpy of mixing follow the

exact same outline, and use the same Rq, f^(Xg), and f^CXg).

The chained equilibria of association cause f^ to

peak at very high Xq. For the simplest model of complex-

atlon, that of A-B monomer association only (K^=0 for n>0),

fg also peaks at large X^. However

so the simple model is unphysical for at least the excess

volume behavior. The other models have not been examined

for their volume predictions. Getting the phase behavior,

absorption, and volume/enthalpy behavior to be satisfactor

ily predicted by any chemical model will no doubt be very

difficult, if not impossible.

Details

The algebra of the mole fraction equations is very messy and

difficult to do correctly, so we present the key equations

for three chemical models as a time saver for any future

work on these lines,

Model I:

A + B^AB K' = S^b/^A^B

X - "A _A" Na+Nb ij^^(Sn6n+26AB+63)

= 5^[(1+K')-2KK'6^+KK'(1+K)S2J
1+2(K•-K)5a+(K-K•+K2-to')5|+2KK'(1+K)53 ,

5 6^ Qa-bSj^+o5^^j
l+d6^+eS.^+2c5^^
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which reduces to the cubic form

(2cX^-c) 62+( eXj^+b) 5|+ (dX^-a) 6^+x^= 0.
Explicit fDcms for the solutions to cubic equations are

available, as in the Handbook of Chemistry and Physics.

Generally there are three real roots 8^ obtained, only one
of which satisfies the constraint that all mole fractions

^AB positive.
83 = (i-[i+k]5^)/(i-k8^)(i+k»8^)

= - (a + b6^ + c8/)/(1-k5^)(1+K»5^)
8^= -(1 + dS^ + eS^ + 2c&^)/D

D =5 + 2e5^+ 6oh^) - a + " ̂®^A^

8^ = - ̂J2(d+2e8^+6c8^2) + X^(2e62+12c8^8^)
+2b8A-6c(f^S^ ]

^chem ^ot very flat for this model for any
moderate K', and b peaks at Xg = 0.5*

Model II:

A + A^_i^ Ajj Kjj = K

B + A^5»BA^ Ki = K'

X^ = (H-K')6j^ - K(1+K')6/
i + (2K'-3K)6^ + (1+3K)(K-K<)5^2 +

k(i+k)(k'-k)6j^3

S 6»Ca - b5J

1 + cSj^ + d6^^ + e8^3 ^

cubic if K / K*, quadratic if K = K*.
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bg = (l-tl+Kj6^)/(l-^-K'JbA)
bSg/bb^ = -{a - b6^)/(l -Ck-K'JSa)^

6^ = - (1 + oSf^ +
D = X (o + 2d6^ + 3e6^2) _ a +2bb^

A reasonable model.

Model III:

A + - K

B + K'jj= K'ot^

Sg =. (1 -B+k3Sj^)(i - «k8a)
(1 - K6^)(l + oi0c'-k]8^)
5^ relation is quartic. unless K = K«, which

we promptly assume:

Sg = (1 - Cl+KjbA^^l - *Kbj^)/(l - k6^)

= (1 +HK)bj^ - 2ctK(l+K)8^^ + «tK^(l-fK)bj^3
1 - 2K6^ + K(1 -«.+ K)6j^2

a (a6^ + + o6^3)/(i + d6^ + eb^^)
6^ =-(1 + d5^ + eb^2)/o

D a ̂ A^*^ ^®^A^ - a - 2b6j^ - 3oij^^

bSg/dS^ = - (a + b6^ + o&/)/(l -
also a good model.

We used two more models, one the same as model III

but with sja.6. one with self-association of B.

The former is not noticeably different from model III, and

the latter is imrealistic for our system.
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