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Abstract

Part 1, Many interesting visual and mechanical

phenomena occur in the critical region of fluids, both for

the gas-liquid and liquid-liquid transitions. The precise

thermodynfiunic and transport behavior here has some broad

consequences for the molecular theory of liquids. Previous

studies in this laboratory on a liquid-liquid critical mix

ture via ultrasonics supported a basically classiced anal

ysis of fluid behavior by M. Pixman (e. g., the free energy

is assumed analytic in intensive variables in the thermo

dynamics)—at least when the fluid is not too close to

critical. A breakdown in classical concepts is evidenced

close to critical, in some well-defined ways. We have stud

ied herein a liquid-liquid critical system of complementary

nature (possessing a lower critical mixing or consolute

temperature) to all previous mixtures, to look for new qual

itative critical behavior. We did not find such new

behavior in the ultrasonic absorption ascribable to the

critical fluctuations, but we did find extra absorption due

to chemical processes (yet these are related to the mixing

behavior generating the lower consolute point) • We rede-

rived, corrected, and extended Pixman*s eoialysis to interpret

our experimental results in these more complex circumstan

ces. The entire account of theory and experiment is

prefaced by an extensive introduction recounting the general

status of liquid state theory. The introduction provides a
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context for our present work, and also points out problems

deserving attention. Interest in these problems was stim

ulated by this work but also by work in Part 3.

Part 2. Among v€wiational theories of electronic

structure, the Hartree-Pock theory has proved particularly

valuable for a practical understanding of such properties

as chemical binding, electric multipole moments, and X-ray

scattering intensity. It also provides the most tractable

method of calculating first-order properties under external

or internal one-electron perturbations, either developed

explicitly in orders of perturbation theory or in the fully

self-consistent method. The accuracy and consistency of

first-order properties are poorer than those of zerd-order

properties, but this is most often due to the use of explic

it approximations in solving the perturbed equations, or to

inadequacy of the variational basis in size or composition.

We have calculated the electric polarizabilities of H2, He,

Li, Be, LiH, and Ng by Hartree-Pock theory, using exact per

turbation theory or the fully self-consistent method, as

dictated by convenience. By careful studies on total basis

set composition, we obtained good approximations to limiting

Hartree-Pock values of polarizabilities with bases of reas

onable size. The values for all species, and for each

direction in the molecular cases, are within 8^ of experi

ment, or of best theoreticsil values in the absence of the

former. Our results support the use of unadorned Hartree-
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I. Introduction

We have recently completed an experimental study

of the velocity and linear attenuation or absorption coeff

icient of ultrasonic waves in 2,6-lutidine: water

mixtures. We concentrated on the behavior near the lower

consolute or critical mixing point of temperature and com

position, Our intent was learning more of the statics and

dynamics of the large, correlated fluctuations in order

parameter—here, the local composition—occurring at crit

ical points. Among probes of such phenomena, ultrasonics

is convenient for its simplicity and for the directness of

its relation to the dynamics. The raw ultrasonic data were

carefully corrected for systematic experimental errors and

statistically analyzed. Results were reduced to molecular

psiraraeters (persistence length, friction constant) using

Pixman*s^ theory for the critical fluctuations and their

coupling to the sound waves. We selected this theory over

rival theories^ principally for its good balance of

tractability and rigor. The formalism was rederived with

some correction and reinterpretation, in order to extend it

to the mixed behavior of our system.

The present studies cover but one aspect of liq

uid state theory, and employ but one experimental probe of

structure and dynamics. We review below the present status

of theories for fluids of complexity ranging from simple
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raonatomic fluids through pure and mixed systems possessing

rotational, vibrational, and chemical degrees of freedom.

The context of our research, which is summarized in the

two journal preprints following, should become clear in the

process.

Various levels of microscopic structure and dy

namics develop through the progression of fluid types under

study; simple flisids and their mixtures, fluids with well-

defined internal degrees of freedom as rotation or vibrat

ion, fluids where the molecules self-associate in large

aggregates, and mixtures of an associated liquid with a

species it solvates chemically. These four classes are not

inclusive: for example, we have excluded dilute solutions

of reactive species, electrolytes, or polymers. In such

solutions the fluid acts as a carrier phase, a dielectric

or solvating medium, or a leirge reservoir of one reactive

species, rather than being of central interest.

Simple fluids are under the most intensive study.

Their thermodynamic and transport properties have been

correlated with model solid- and gas-like structures by

approximate theories. More rigorously, one can correlate

their properties with the basic molecular parameters, the

mass m and the intermolecular potential V(r). One does not

assume a small set of basic structures; rather, one employs

full statistical mechanical theory and describes the fluid

with very general distributions containing complete infor-
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mation. Critical phenomena are still beyond fully success

ful quantitative description by rigorous or even approximate

theories, as the critical region•s thermodynamic instability

is reflected strongly in its microscopic structure. In the

second class of fluids, the members are necessarily poly

atomic and nonspherical. Equilibrium properties are modi

fied either by the strong coupling of rotation and transla

tion, or (in the dimerization case) by the strong coupling of

all internal degrees of freedom in two molecules.

Repartitioning of phase space allows adequate treatment by

rigorous statistical mechanics or thermodynamics. Transport

in dilute fluids of this type involves more complex (angle-

dependent) distributions and some new mechanisms, and is

difficult to describe. Dense phases pose a virtually insol

uble problem to date. The associated liquids forming the

third class possess extensive spatial and motionsil struc

ture, built from a great modification of the degrees of

freedom of the isolated molecules through an n-body inter

action potential deviating strongly from pairwise additivity.

So much of the framework of rigorous molecular statistical

mechanics on the few-body level is. inapplicable, that only

phenomenological descriptions are possible, based on a few

large and fixed structures or on a set of linked chemical

reactions. The behavior of a mixture of another liquid with

an associated one is even more difficult to explain with

molecular or other microscopic imits of structure. More
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narrow empirical relations of bulk properties are required,

except for critical mixing phenomena, which are qu^itative-

ly similar to all other critical systems.
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A. Simple Dense Fluids

These fluids show no evidence of internal struc

ture, meaning they are generally monatomic. We exclude from

consideration the liquid metals, whose cohesive forces are

qualitatively different from those of insulating liquids;

a recent conference^ has summarized what is known of liquid

metal structure and dynamics. We also exclude quantum

effects-5^'^^ as manifested by the light atoms He and Ne even

to "high" temperatures. The properties typically of interest

are, for equilibrium, the PVT data or equation of state, the

heat capacity Cp or G^, the chemical potential^, and the

surface tension C; and for transport, the shear and bulk

viscosities ̂ i^and , the thermal conductivity X , and the

diffusion coefficient D, as they depend on the equilibrium

state and possibly on the transport process angular freq

uency The dynamic responses of the fluid to nonthermal,

mechanical perturbations or probes such as elastic and

inelastic light and neutron scattering are also of interest,

on independent grounds as well as for further confirmation

of our understanding of related bulk transport coefficients.

Experimental techniques for equilibrium and

transport properties are many and varied, PVT data have been

compiled extensively by straightforward pressure bomb meas-

urements^ on confined samples. Ultrasonic studies yield the

velocity 13, which provides a simple and accurate additional

determination of the adiabatic compressibility ^ ,
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which otherwise requires extensive numerical analysis of the

straight PVT data. The critical region equation of state is

also probed on special cuts in the thermodynamic plane by

such unseemly means as NMR^. Heat capacities or Gp are
7  — —taken by direct calorimetry,'- by and large. The ultrasonic

value for is also used to check the critical region diver

gence of Gy = from the better-known behavior of Cp

and Surface tension & is primarily measured by capil

lary rise^*^. Among transport coefficients, the best-studied

are and X , the former by capillary flow or rotating

disk viscometers^^'^^^ and the latter by heat flux measure

ments across parallel plates or concentric cylinders^^'

The self-diffusion constant D requires some ingenuity

(though for mixed fluids mutual diffusion also exists and

is straightforward to determine), Radioisotope diffusion^^^

NMR spin echoes^^^, and light scattering^^' are in use,
the latter two particularly near criticality. Ultrasonics

provides the only measure of the bulk viscosity

through its proportionality to the absorption coefficient

oc=^ to . Additional fluid properties which touch

more or less directly on the microscopic structure we seek

to understand include pair distribution functions g(r) from

x-ray^^^'^^ or neutron scattering23a^ validity of the
g(r} concept and calculations as well as the form of the

intermolecular potential is investigated. The long-range

structure of near the critical point is probed by
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light scattering7i Other light-scattering information

includes the velocity and attenuation of hypersonic thermal

waves (Rayleigh and Brillouin scattering^^), also inves

tigated ultrasonically^^^' depolarization spectra^^,
and induced Raman^-^, Further afield are such properties as

second-order transport coefficients, of which thermal diff-

usivity"^^ is an example.

The bulk properties of the liquid phase pose the

greatest theoretical problems. They reflect the properties

of the solid and of the gas to which the liquid is related

by the first-order transitions of melting and evaporation;

in addition there is the dramatic connection to the gas

through or above the second-order critical transition.

Similarly to the gas, the liquid has high fluidity ; an

entropy S much higher than the solid; diffusion constant D

and dilational viscosity of similar magnitude to those of

the gas; and modes of bulk motion described by the Navier-

Stokes equations^^^. In common with the solid, the liquid

has a heat capacity-G^, internal energy E, and enthalpy H

reflecting strong molecular interactions; a compressibility

K  and a molar volume V showing similar packing and mean

forces; and a heat conductivity A indicating similar mechan-
23b

isms of energy transport . Of course, the similarities or

differences are often more quantitative than qualitative and

depend upon which thermodynamic cut one chooses. There is

also the more microscopic structure such as equilibrium
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pair distribution functions ̂ (r) to compare among phases.

We wish to explain the properties above, in their dependence

on the thermodynamic state within the liquid or dense gas

phases as well as across the transitions. Correlations with

the solid or gaseous phases are useful, but a more basic

explaination should derive primarily from the molecular param

eters of mass m and potential V(r), which also ground the

properties of the other two phases. The critical region

connection of gas and liquid poses a special challenge by

its anomalous rate of change of properties light

1 p
scattering power = opalescence, e.g. » ) and its violation

of classical thermodynamics based on the analytic nature^*^^

of the free energy G, The cooperative phenomena here are

apparently in basic analogy^"^^' to many other thermal

many-body phenomena in highly dissimilar systems such as

ferromagnets and superfluids, or in the more closely related

consolute binary liquids.
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B. Equilibriiim Theory

The earliest success in explaining dense gas non-

ideality and in correlating the same to the existence of a

gas-liquid phase transition was achieved by van der Waals in

the equation^^ bearing his name. He postulated an excluded

volume b in the total volume due to finite molecular size,

as well as a pressure term a/V^ proportional to the inverse

square volume due to the attractive portion of the pair po

tentials. The parameters can be set from the critical

parameters of the fluid to yield a reasonably good gas

description. There arises a principle of corresponding

states^>29 among all gases when and T are all reduced

to their ratio with the corresponding critical values

V^, and 3^. Experiments bear out the principle rather well.

In the true liquid region the van der Waals equation

describes fictitous states, but the ad hoc Maxwell construc

tion^^®" locates the liquid-gas phase boundary. The shape of

the coexistence curve in the critical region is now known to

be qualitatively incorrect*^ , but this defect is sh£u?ed with

every theory based on classical thermodynamics assuming the

analyticity of the free energy in the intensive variables.

Basically, we assess that the van der Waals theory takes a

gas to be structureless: within the excluded volume the

molecules are entirely random in time-average placement.

However, both the repulsive core and the attractive tails

in the pair potential, induce structure-^^'^^®" in the pair
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distribution, directly between two bodies and indirectly

through third bodies. Statistical mechanics notes that

the momentum-averaged probability of occurrence of a spa

tial configuration (ri,r2,... ^ molecules is

proportional to exp-U(?j^,r2i •.. » where U is the total

potential energy.

The search for a better equation of state, partic

ularly for the liquid state and preferrably a less empirical

one based more on the intimate molecular mechanics, yielded

no essential advance until the 1930's. At this time, the
32

x-ray diffraction patterns of liquids were measured^ and

found to show remarkable short-range order reminiscent of

the solid state. Quasi-crystalline models of liquids sprung

up in number, all partitioning the configuration of the

liquid into effective single-particle distributions for one

particle moving in the averaged field from a lattice of the

other particles. Originally, these cell theories^
postulated a complete lattice structure and uncorrelated one

particle motions under hard-sphere or Lennard-Jones poten

tials. They considerably underestimated the entropy by over

estimating the structure, particularly by not allowing the

interchange of particles among cells, much less multiple

cell occupancy. The equation of state is quite poor, while

the internal energy is quite acceptable. Lennard-Jones and

Devonshire accounted for the extra potential from two further

'coordination shells* in the lattice in establishing both

free volume and total lattice energy. They also corrected
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the 'communal entropy' from particle exchange fully toward

the gas value. Double occupancy of lattice sites was pro

posed later, introducing the communal entropy more gradually

through the liquid range and giving better critical con

stants and overall liquid properties. Allowance for vacant

sites in the lattice, to an extent dependent on temperature,

marks the hole theories, with the best accounting for the

entropy. The net equation of state is little better than

the three-shell straightforward cell theory. A tunnel

theory proposed by Barker incorporated effective linear

channels in the lattice for freer motion but only partially

corrected the entropy errors. Eyring and coworkers^^ ad-

mechanical partition function or, equivalently, the config

uration integral. They start frbm hole theory and reject

all but the 'significant structures' in the N-particle

distribution, meeting with modest success.

These solid-like models can give reasonable prop

erties in limited ranges. They fail near the gas region, of

course, and will ever be insensitive to the features of the

intermolecular potential. They still provide empirical

correlations for engineering usage, particularly for mix

tures, and do incorporate enough of the proper energetics to

ground reasonable transport theory. The first steps toward

an a' priori equilibrium theory were taken in the same era

by Ursell^^ and especially by Mayer and coworkers^^, work-
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ing from the definition of the configuration integral and

expanding it in orders of the density—the so-called virial

or cluster expansions. One chooses a parameterized pair

potential and then carries out successively higher-order

integrations of exp-U^j/kT involving larger and lairger clus

ters of n molecules. The required time and effort limit the

approach to the lowest orders of virial coeffiecients (of

P/kT), less than six for the Lennard-Jones potential^^.

Convergence difficulties appear to defeat any applic

ation to real liquids in any case. The chief use of virial

theory now is production of exact virial coefficients for a

given potential, to compare to the effective coefficients

from equations of state yielded by promising approximate

theories,

Yvon^® and Bom and Green^^in the late '30's and

•40 *s proposed a description of fluids by n-particle dist-

ribution functions £ " i which are integrals over

(N-n) other particles of the configuration probability

exp-U^/kT. times a combinatorial factor for the ways n par-
(2) -4

tides can be chosen among N, The pair fimction (£^^,£2^

=g(r ) is central for all properties (but total entropy^^^)

of our type of fluids. One may derive a coupled set of

inhomogeneous integro-differential equations for the heir-

archy of the g^^^ from the Liouville equation in total phase
space or its equivalents. The resulting Born-Green-Yvon

(n)
(BGY) equations are unclosed, in that the ^ equation in-
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volves an integral with g . Closure can be obtained by
(ri) / 2)

approximating kIl ^ product of ''s—the superposition
kQ

approximation 'of Kirkwood —or a little more flexibly as
ki 42 43

in Cole's or Fisher's approximations. Bogolyubov also

postulated similar equations without practical extensions,

Kirkwood^^ proposed an alternate set of equations to go with

the closure scheme, using a coupling parameter for a test

particle and obtaining slightly different results in the

superposition approximation.

The pair distribution approach is desirable for

(2)
severgd reasons. Its prime quantity '(r) has a direct

integral relation to the macroscopic equilibrium proper

ties^^® and to the Fourier components (in the space of s =

4ir sine/A ) of the x-ray scattering intensity. By reason

of this second relation (an analogous one exists for neu

tron scattering), the theory's output g(r) can be checked in

point-by-point detail, over and above as a weighted average

with potential operators for bulk properties. X-ray exper

iments are not currently accurate enough to be a prime

source for g(r). since the computed properties, especially

the pressure^, are rather sensitive to errors in g(r).

A third 'advantage' of the distribution theory is that the

equations are readily truncated by an approximation (super

position) with some intuitive physical interpretation.

Unfortunately, alternate approximations more appropriate for

true liquids are not possible and the theory is presently
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tence of the theory by any foreseeable extension, as they

are true many-body instabilities.

The superpositon technique has been tested exten-

sively^^^ up through liquid densities and temperatures,
where it fails badly in predicting the equation of state.

Rushbrooke and Scoins^^ looked at the effective 'direct'

correlation function c(r) which determines g(r) by the Orn-

stein-Zernicke integral equation^^ and advanced a simplific

ation called the netted-chain(NO) equation. This was

quickly replaced by the better hypemetted chain (HNC) which

gave encouraging results in dense systems. Near this time,

Percus and Yevick^*^ derived a related approximation (PY)

and justified it on the basis of arguments in many-body

theory for collective motion of the Fourier density compon

ents. PY theory is the most successful distribution

approach, as it even shows a phase transition in appropriate
48

conditions. It has been improved (the PY2 form ) and also
49

adapted for nonspherical systems ^ and for the presence of

three-body potentials^®. Further advances are still needed

for the densest liquids near the melting transition and for

the critical region, but they are not foreseen as extensions

of present forms. There exists the direct expansion of g(r)

in cluster integrals^^ that can be systematically extended

to any order in density, amoimting to stopping at the next-

to-last stage in virial theory. However, the theory is at
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least as difficult as the latter and has mostly formal util

ity in searching for new approximate theories.

Several groups, beginning with Zwanzig^^, have

developed theories for the equation of state starting from

the free energy, and perturbing it from the hard-core refer

ence result to change the configuration integral and the

pair distribution function, A limited class of systems are

treated successfully by this approach in a straightforward

application.

Two *brute force* approaches to fluids are applic

able with all pair potentials and all thermodynamic states.

They provide reference values for other theories to measure

up to, essentially giving the experimental behavior of ideal

fluids uncomplicated by any trace of triplet potentials or

21 53a
experimental errors. The Monte Carlo theory ' generates

the configuration integral by assembling random points or

N-particle configurations for the integrand. The latest

practical versions select configurations with a probability

proportional to exp-U^j/kT to gather the largest contribut

ions with the least work. Properties are excellent when

referred to real substances such as argon. They are accur

ate enough to relate deviations from experiment to triplet

potentials and other complications. The limited size of

systems of N particles that can be handled leaves a little

doubt on some properties, certainly near criticality where

the long-rsuige correlations cannot be represented. The
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second approach, molecular dynamics , consists in ntimeri^

cally integrating the equations of motion for N particles

over a representative time span, in two or three dimensions.^

This technique is also very accurate and is packed with

information, including transport coefficients (autocorrel-

ation function theory relates macroscopic gradient

dissipation to that of spontaneous microscopic gradients).

It is restricted to even smaller systems than NG for the

same effort or computing time. Neither theory can be con

sidered an everyday working theory for investigating liquids,

particularly as the quantitative results are not readily

broken down into a limited number of qualitative concepts

for a physical understanding.

Critical phenomena are in a territory of true

many-body instabilities untouched by all the microscopic

theories. The vanishing of the derivative OP/aV)^ and of

the gas-liquid density difference (and hence, the meniscus)
26

tnakes for dramatic mechanical and visual effects , Several

cuts in the PVT plane are of interest—the isotherms, the

isochores, and particularly the coexistence curve. Anomal-

ous—even diverging—specific heats are present , The

microscopic parameters of correlation, as the total correl

ation length K-1 in the asymptotic part of g:(r)'^e"^ ̂ /r,
become macroscopic and show up in strong light scattering or

opalescence"^'^^. Transport also shows significant anomalies,

though we are presently considering only equilibrium aspects.
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The original phenomenologi-cal theory of van der

Waals did touch on critical phenomena. Its principal predic-

tions*^'^^'-^^ are a parabolic shape for the coexistence curve

in (T"T^) versus (f-fc), a simple discontinuity in specific

heat across the critical point on the isochore, and an

inverse linear divergence of the isothermal compressibility
27cfi^ with (T-T^). We may use the shorthand of Fisher's

critical exponents to express these results. The exponents

are power laws relating two intensive variables' differences

from their critical values. The van der Waals' exponents

corresponding to the three predictions above are ̂  =i,

= 0, andY^ 1, the same for all fluids. The critical point

in van der Waals theory appears to originate in cooperative

motion from long-range forces^^®, while the quantum theory

of intermolecular forces^'^ by London and others showed the

forces to be of short range, varying as r"^ asymptotically.
46

Ornstein and Zernicke proposed an alternate microscopic

theory to calculate the long-range total correlation func-

tion g(r) from a short-range direct correlation function

o(r). They focused on the critical opalescence intensity

and on the related divergence of K^, both tied to the behav-

ior of the correlation length iC . Their results for Hy

agree with van der Waals theory, despite the assumed differ

ent nature of the forces. A more detailed microscopic

theory originally applied to ferromagnetic systems, Landau

theory^^, clarified the connection. All the theories to
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that time were mean field theories, in which the order par

ameter for the transition (f for fluids) is not allowed

to fluctuate spatially while computing the free energy, but

the form of the free energy allows the spectrum of fluctua

tions to diverge at the same time. Any assumption of the

analyticity of the free energy in T and V brings these con-

dlusions.

80
Experimentally, the coexistence curve was shown-"

in time to be flatter than parabolic, consistent with a P

closer to 1/3 than | and contrary to classical theories.
S8o.,S9

The Ising model^for the analogous ferromagnetic transition

predicts a ̂  of nearly 5/1^, however, and this is encour

aging, The Ising model can be converted^^ to a model of the
gas-liquid critical point called the lattice gas by redefin

ing variables and interactions. The fluid molecules are

restricted to lattice sites which may be singly occupied or

unoccupied. Nearest neighbors interact with a single fixed

strength. It is essentially a hole or free volume descrip

tion with exact correlation of the particles and holes,

though the Hamiltonian is oversimple. The other critical

exponents it predicts are quite good. An important result

is cK = 0, in the sense that the isochoric specific heat

diverges logarithmically. This definitely quashes hopes for

applying classical thermodynamics to the model. Experiment

al verification of the Gy anomaly was slower in coming, due

to the difficulty of doing calorimetry in the critical
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region. The ultrasonic value for /(^ was and is used to con

firm the anomaly through the known divergences of Cp and

and the relation CyAj =

A total of nine critical exponents are now defined

27
and more or less accurately known^' from classic PVT data

as well as from more exotic and direct probes such as

6l ft
refractive index differences and NMR line splittings .

Their universal disagreement with classical predictions has

stimulated the development of a nonclassical thermodynamic

scheme known as the static scaling laws^®^'^^, which relate

the exponents to each other. The basis is a universal equa

tion of state in the reduced intensive variables, in turn

based on the analyticity of the chemical potential through

the critical transition. It is by no means a complete

explanation^ for it does not yield enough relations to

predict all the exponents; it does not give the coeffic

ients in the power law relations; and it cannot locate the

critical parameters and T^ on any basis, much less a

molecular one. It is useful in displaying the essential

analogy^® among all fluid transitions and even among all

critical transitions, (We exploit this analogy in our work

here, as we study the experimentally convenient binary

liquid-liquid transition in lieu of the harder gas-liquid

one;) More microscopic theoretical leads have come from

Fixman and from Kawasaki and several others for the behav

ior of K ̂  ,under investigation by light scattering^^'^^ and
also ultrasonic absorption^ although the latter has a
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strong connection to the dynamics to cloud the issue.

Other problems faced by critical thermodynamic theory

<8cinclude slight variations^ of exponents among systems,

possibly from quantum corrections or residual sensitivity of

exponents to the exact form of the intermolecular potential.

Many investigators continue to look at the critic

al region with greater precision and more sophisticated

techniques. It is important, to qualitatively and quantita

tively refine our understanding of this gas-liquid connec

tion, for its basic many-body chfiu?acter reflects on our

general ability to describe fluids. The dynamic aspects

are similarly important and will be discussed under transport

theory.



21

G. Transport Theory

A fluid subjected to external stresses ( such as

shear or dilational forces from forced flow or sound wave

passage, or heat stress from a temperature gradient on its

boundaries) reacts against the stresses to dissipate them.

Outside the Knudsen regime-^'^'^'^'^of extremely low density^ and

excluding gradients over distances comparable to molecular

separations, the bulk fluid may be treated as a continuum

described^® by local mass density p , temperature T, and
velocity x these nonequilibrium conditions. Gradients

in these quantities are dissipated by corresponding fluxes

of mass, energy, and momentum. The empirical equations of

motion for these five local variables have been formulated

thoroughly as continuum mechanics or hydrodynamics, begin

ning with the work of Newton, of Kuler, and others^^'^^.
The equations express the conservation^"^® of mass, momentum,

and energy (the respective densities of which are f, fv,

and + ('e(T,f ), where € ̂ internal energy per unit mass

for the same T and ̂  at equilibrium) and introduce the phen-

oraenological coefficients of transport , and "X :

Mass flux It ̂  Cfv) - O continuity (1)

Momentum n o »
flux ^
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f  Euler, (2a)
'' I » ' » '

circulation |
source

68
OR Navier-Stokes^

Oir"' r.t -I '">
Energy ^ Cxpv^+pe) + V- fv (3 ev'+ - O; (3a)
flux ^ ^ / L ^ ^

Jt ■= A (Tj enthalpy per unit mass^
OH

oT (If + ^-Vs) - O linearized (3b)
^  adiabatic equation ,

For viscous, heat-conducting fluids,
add to (3a) the extra terras (ref. 67b):

_v-[v-2'

(Pure heat conduction follows the
empirical law:

q = heat flux = -"XX? T (v = 0) ,

or equiivalently,

^ y^T " o ^ Fourier's law.)
B t

These equations describe an enormous range of poss

ible bulk flow patterns, depending upon the boundary

conditions and the magnitudes of the transport coefficients.

The whole of hydrodynamics is not of immediate interest to

us in this review (but see ref, 66), We are concerned with

the eventual explanation of the transport coefficients in

terms of molecular parameters—-and also with the bulk
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response to special boundary conditions such as the time-

dependent periodic motion in sound waves, that allows us to

measure the coefficients. To develop this last point: it

1 8p
suffices here to linearize all the equations, i.e.,

to retain terms only of first order in the small fluctua

tions 6p, 6p, 8t, and 2* In this event, the energy equation

(3) to first order expresses the adiabatic equation of state

dS = 0. Internal dissipative processes give second-order

perturbations, and thus an entropy production or energy

loss restricted to quadratic or higher order in the grad

ients as required for stable equilibrium and a

propagative mode. Heat conduction and shear viscosity are

two dissipative processes that have a reasonably direct

intuitive picture. Bulk viscosity is more of a catch-all

for all other dynamic additions to the equation of state,

from the finite-time relaxation of internal degrees of free

dom (relative concentratinn in a mixture, chemical equil

ibria in an associated liquid, e.g.). We must find

additional empirical rate laws for these degrees of freedom,

or relaxation equations^^*^. In conclusion, the energy loss

from the combined effects of>ij,nv, and "X manifests itself
18d,19d/<lSP _ 1 \

as a linear attenuation XTF" / travelling

•classical* ' »excess*

We may identify with momentum transport, A with

energy transport, and ~>\ with a mixture. The self—diffusion
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constant D clearly concerns mass transport, but in a special

sense, as ̂  is unchanged by self-diffusion unless the exper

imental probe can distinguish molecular labels such as spin

(N?IR)^^^ or isotopic mass differences^^. The empirical

equation in which D appears relates the labelled mass flux

t and the gradient in concentration

t - - pDVc T

or V c /he ) V/x in complex
cases;

-=P ^ isothermally; Pick's law.

The molecular-mechanical explanation of these

transport coefficients lies ultimately in the parameters m

and V(r) and in the classical mechanical equations of motion

for the N identical particles. (Quantum equations of motion

for transport make only small corrections for simple liquids
5f

and have been put together very piecemeal, in any event, '

6c,70,71a,72a ^fter von Neuraann"^^ laid the basics.) For N

particles, the Hamiltonian equations of motion are most com-
5 74a 75a

pactly expressed as the single Liouville equation ' '

for a trajectory of the system (or flow, for a statistical

average or of initial condit-

ions) in the 6K-dimensional space of positions and momenta.

On an ensemble average for N very large, the system exhibits

(irreversible) continuum hydrodynaraic behavior at times much

longer than individual collision times. Before we can solve

for the motion and numerically evaluate the transport coef-
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ficients, we face the great conceptual and practical prob

lems of (a) reducing the Liouville equation and N-particle

distribution functions to the level of few-body collisions

and distributions, rigorously or approximately, and (b)
11a

resolving the dilemma posed by the time-reversibility '
36b,7^b,75b>77 Liouville equation in contrast to the

irreversibility of the long-time phenomena it describes.

Rice, et al.^^^ break down the molecular theory of transport
into three major areas: (1) analysis of the essential mechan

ical nature of irreversibility, (2) derivation of a

suitable kinetic equation for the long-time evolution (much

beyond individual collision transients) of some few-body

distribution, and (3) solution of the equation for the trans

port coefficients in terms of the molecular parameters plus

and T. The first two problems are not simply annoying

obstacles to the final numerical calculations; rather, they

lead to rich and useful concepts in statistical condensation

of the intricate molecular motions down to the level of

observation in real systems, all of which are extremely com

plex many-body systems.

On the first level, important work was furthered
_r>

by Kirkwood^^^'^^^'"^^^' ^ on cosu'se-graining the detailed
molecular distributions down to the level of crudity of real

lld,36d,7'<'b,78a
observations, and by Prigogine and coworkers

on the destruction of motional invariants (smechanical

order) by the collisions. It is now understood that for
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systems of macroscopic size reversibility manifests itself

only at times so long as to be cosmologically meaningless^^?

In autocorrelation function theory^^^''^^^'"^"^^''^®^, the prac
tical irreversibility of the bulk equations of motion and

of the low-order molecular distributions is postulated, and

then used to declare the identity of the regression laws for

fluctuations in both cases. Generally, the formal studies

on the first problem of irreversible behavior have been

peripheral to the more intensive work on the second problem

of constructing actual few-body kinetic equations. The

third step, numerical testing of the equations, follows the

second quite rapidly and establishes the limits of applic

ability, We'll recount below the general history of kinetic

equations as a way of summing up transport theory.

The first kinetic equations were limited to dilute

gases, where the collision phenomena are easiest to sort

out. The N-body motion can be reduced to considering only

binary collisions occurring in a completely random fashion.

Early free-path models for hard-sphere gases were proposed

by Maxwell and others^^^'^^'^^^'*^^^ in the nineteenth cen
tury and made almost fully quantitative by the time of

80
Jeans , While providing adequate fits to data and a very

good intuitive picture of transport, the free-path models

dgpend upon some undetermined coefficients which must be

71d
estimated, and they also apply only to hard spheres

Boltzmann* s®^ work culminating in his famous equation solved
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these problems, but some work did continue on these lines:

Eucken^^''^^ developed corrections for nonspherical molecules

which can carry extra momentum and energy in rotation; and

Bhatrager, Gross, and Krook'^ constructed a complementary

approach based on the distribution of collision times rather

than free paths, leaning on some of Boltzmann's formalism.

In 1872 Boltzmann postulated a fully determinate

equation for the time-dependence of the singlet distribution

function, which is the time-dependent generedization of the

of equilibrium theory, and the carrier of the hydro-

(1)
dynamic information. (1) f is presumed to be a functional

of the initial gradients which relaxes by isolated binary

collisions occurring under the influence of arbitrary but

short-ranged intermolecular potentials. Ternary and higher

collisions are taken as negligible. (2) The equation for

made closed by factoring the pair distribution

occurring in the collisional driving term into a product of

singlet distributions. This is the same as assuming that

pair and higher correlations do not build up for successive

collisions. (3) The gradients and time-dependence of the

distribution functions on the molecular collision time and

distance scales are assumed negligible. All these conditions

hold for dilute gases^^^'*^^®, with (2) being most difficult
to justify. Condition (2), called the molecular chaos

assumption, short-circuits the infinite heirarchy of time-

dependent BGY equations in the exact but impossible N-body
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treatment, and it introduces the irreversibility. its anal

ysis as a coarse-graining of the distribution functions

remained the primary, if not fully satisfactory, explan

ation of irreversibility until the time of Prigogine and

his school,

fin
Jeans and others used the Boltzmann theory for

Cy, Qp

qualitative and formal studies. Enskog, with others'^ ' ,

gave the explicit solution for the transport coefficients

in terms of collision integrals, starting in 1922. Final

5i
numerical solutions-'^ for a series of model potentials,

including the Lennard-Jones, came in the 19^0's. The

results were good enough for a quantitative understanding

of transport in dilute gases. The analogous equation for

truly quantum-mechanical systems like the lighter atoms

83 84"
and plasma electrons was shown in 1928 by Pauli Grad

extended the Boltzmann approach to very low densities and

other conditions where the continuum nature of the fluid

85
begins to disappear. Grad also notes that the Boltzmann

equation is even more important for strong-gradient pnenom-

ena (shock waves, ultrahigh frequency sound) than for stan

dard stationary transport. An extension to polyatomic

systems in a realistic description of internal motion has

86
been made by Wang-Chang, Uhlenbeck, and deBoer

The initial work for the dense gas region was done

87by Enskog ^ who accounted for finite moleculeu? separation

during collision (hard-sphere) in calculating the collision
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integrals. The Boltzmann theory thus corrected works down

to liquid densities and explains^^ qualitatively the
observed minimum in viscosity as a function of density.

However, a hard-sphere model with fixed parameter C is inad

equate through the liquid range, as new mean forces and

structure develop; Enskog's theory cannot be made quantita

tive over any extended density range. Bogolyubov^® proposed

a heirarchy of Boltzmann-like equations as an expansion in

powers of density, to be used with realistic non-impulsive

intermolecular forces, hopefully for all densities. While

the numerical results are good for moderately dense gases,

the series does not converge. It has been discovered in

consequence that the density expansion of transport coeffic-

89
ients is non-analytic , due to the subtle growth of high-

order correlations among collisions. The formal, exact

theories that can handle this problem have come only

recently and suffer from great complexity and other inad

equacies; they will be discussed shortly.

More phenomenological approaches gloss over the

details of the individual binary collisions, all coupled

strongly to one another in dense gases and liquids. At the

same time, they make more tenuous the connection of molec

ular parameters with numerical values for transport

5k
coefficients. The principle of corresponding states for

non-equilibrium states was developed early, and continuously,

on dimensional analyses of model kinetic equations. The
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principle as applied far into the liquid region seems to

work well for the rare gases. However, some discrepancies

occur with polyatomics, even those so nearly spherical as

The simple two-parameter models for the intermolecular

potentials smooth over small features that differ between

rare gases and polyatomics, while transport seems to be

much more sensitive to such features than equilibrium

properties.

90
A second approach is that of Eyring's^ rate pro

cessor theory, first advanced in 1936. Here it is presumed

that every transport process has some rate-limiting step,

of the character of a unimolecular passage over a barrier

in an appropriate space. Quasi-molecular parsuneters for a

relaxation time and an energy of activation are needed.

Reasonably consistent connections can be made to simple

equilibrium properties for all kinds of molecules, if one

avoids the dilute gas region. The shear viscosity is well

accounted for in its P- and T-dependence; D is poorly given:

and X is given well, except in its P-dependence.

Kirkwood^®^'*^^^ started a third approach, using a

Brownian motion model for the evolution of singlet and pair

distributions. The Markovian nature of the time-evolution

91
( a generalization of Pokker-Planck form ) ensures irrever-

(2)
sibility. The pair fimction f or g is required, since

71 Vi

liquids with nonimpulsive interactions have specisil

potential contributions to transport, in addition to the
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kinetic or 'piggyback' part considered in Boltzmann-like

theories. The new phenomenological parameter is the molec-
.  36a: 71i

ular friction constant > , of uncertain relation to

the molecular parameters and equilibrium distribution

functions; this is the method's weakness, Kirkwood's

theories give us fair numerical results, but quite sensitive

to the friction constant value and not mutually consistent

even with ̂  adjusted"^^^. Insofar as the theory is correct

quantitatively, it gives us some insight into the nature of

collisional correlations and new mean forces in liquids.

However, molecular dynamics data on model systems have

recently provided^^ evidence against Kirkwood's picture of

velocity autocorrelatinn decays. The principal defect is

the lack of validity of Markovian equations for the strong

collisions"^^^ which are responsible for much of the trans

port, in contrast to their validity for the more common

weak collisions in the 'cage' of neighbor molecules. Rice
93

and Allnatt attempted to correct this defect in large part

by introducing 'hard' and 'soft' friction constants at the

expense of greater empiricism. Their results for realistic

systems, especially for pressure and temperature dependence,

are encouraging but may never be adequate—even if only due

to the need for gross approximations in equilibrium g{r)
11 f 9^

and other input data . As a final note, many workers^

have extended Brownian theories for mixtures, principally to

provide good engineering correlations of data.
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Cell models are a fourth empirical approach.

Cohen and Turnbull^^ proposed a dynaimic version of the hole

or free volume theory. A molecule may move only if a void

of some critical size opens next to it, by the random coal

escence of the free volume. It requires the hard-sphere

diameter o' as an additional empirical paramecter and can fit

11^
transport data quite well in temperature, except for D

It fails to represent the intermolecular potential flexibly

enough, apparently.

Of recent origin are the rigorous formal theories

of transport which provide an analysis of the fluid response

to a perturbation of any nature or frequency. They begin

with an operator resolution of the Liouville equation or of

the quantian density matrix delve into the many-body

phenomena to define the most meaningful collision events.

Pgirticularly, they show how correlations are destroyed to

generate irreversibility; they further provide, as by the

partial summation techniques of many-body theory, approx

imate kinetic equations on the few-body level. Their value

lies in their facility with all kinds of transport for any

state of the system (in principle only, at present), their

utility in developing concepts about the collisional nature

of irreversible processes, and their position to start and

to assess different model knietic equations. Really adeq

uate theories for liquids may derive from these soon.

The early BGY or BBGKY heirarchy^®'^^'^^'^^ of
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equations for the time-dependent reduced distribution

functions is rigorous in principle but shows no systematic

way to anadyze irreversibility and then to generate new

39
kinetic equations. (Born and Green-^^ did use a superposi

tion approximation in transport to get fair results for

40b
dense gases.) Kirkwood suggested a many-body operator

technique be used before reducing the Liouville equation to

the few-body level. vanHove^^ later succeeded in treating
weakly-coupled (weak potentials) systems, stirring much

enthusiasm. Essentially, he obtains a master equation for

the time-dependent populations of the unperturbed N-body

states, by disregarding phase-coherence and interference

of the successive sets of collisions, in quantum terms.

Brout and Prigogine^*^ derived a similar classicsil master

equation on rather intuitive grounds (classically, one

works with similar N -body eigenstates of the Liouville

equation, defined in phase space). Finally, Prigogine'

developed an operator resolution of the classical Liouville

equation (looking very much like quantum mechanics in form)

and showed how a simple master equation resulted from

summing certain classes of the perturbation expressions to

infinite order. The formalism displayed an explanation of

irreversibility without extra, ad hoc statistical

postulates: the collisions destroy motioneil or mechanical

invariants of the system on the hydrodynamic time scale to

give increasing disorder; correlations built up by success-
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77c
-ive binary collisions flow'' into higher-order correlation

functions whose detailed structure is unimportant for obf-

served properties. It also shows, in the structure of the

master equation, that the short-time evolution of the system

is non-Markovian^^^'*^^^, degenerating to Markovian (random,
Brownian) only for longer times. Transport and relaxation

in weakly-coupled gases and weakly-anharmonic solids were

understood quantitatively'^^ with Prigogine*s theory, but

strongly-coupled systems like real liquids are still too

complicated to treat. A more approximate form suitable for
98

liquids on the pair distribution level was derived^ and
llf

tested recently, but found lacking.

The other principal formal theory concerns itself

with autocorrelation functions. These are

time correlation functions for simple dynamic variables such

as (> or V , e.g.,

= <v(t)v(0)) .

The brackets indicate that an equilibrium ensemble average

is to be taken, and imply that the autocorrelation functions

are implicitly dependent on the equilibrium intensive vari

ables ̂  ,T, etc. The ACP's or their Fourier transforms

contain all the basic dynamic data. This remarkable dis

covery of transport information in equilibrium fluctuations

has been known quite a while in diverse systems sucli as

electrical resistors^^. The application to transport in

dense neutral (molecular) systems is more recent^*^^.
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The usual transport coefficients are just zero-frequency

components of a few autocorrelation functions times def

inite numerical factors.

The ACP's can be represented as the linear or

first-order response of the system to the appropriate

adiabatically-applied perturbation, either mechanicsil

electromagnetic radiation, a moving boundary, e.g., or

thermal—temperature gradient, pressure gradient, etc.

However, explicit solution for the perturbed (N-body) phase-

space distribution involves solution of the complete N-body

problem. We must depend upon further leads within or outside

the theory to compute ACF's using only few-body dynamics.

Some approximate kinetic equations for the ACP itself di-

rectly are being tested*^ . Also, the numerical results of

molecular dynamics calculations can be reduced to niimerical

values for transport coefficients, using the basic discovery

noted initially^^^.

The AGP approach is extremely difficult in prin

ciple and in practice now, but it holds much promise.

Certainly, it has the advantage of using the entire frequen

cy spectrum of transport to understand and check the

model kinetic equations. It also interrelates data from

ordinary transport and relaxation (such as the dielectric

relaxation spectrum derived from the AGP for one molecule's

electric dipole <u(0)-u(t)> ) with data from special

probes from more complex perturbations (such as fluorescence
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depolarization: ̂  2 ^•

Critical region anomalies in transport were slow

1 pff
to be recognized and studied experimentally so the

corresponding theory is relatively new and undeveloped.

The earliest, and qualitative, theories were directed toward

101 102
the excess ultrasonic attenuation ' in critical liquid

mixtures. These theories claimed that other wave propaga

tion phenomena (shear viscosity in special flow patterns

101 102
around fluctuations , or Rayleigh scattering by same )

were masquerading as anomalous changes in the bulk viscosity.

They ignored the possibility that near the critical point

there were changes in the nature of mutual diffusion, which

is the principal mode of relaxation of the fluctuations,in

concentration. These theories were wrong, for diffusion is

19e
altered from its standard form ^ ; Pixman's ideas on this

line^ gave the first quantitative success for the anomaly

in bulk viscosity. His related theories for shear viscos-

ity^^^ and for static heat capacity^^^ also worked fairly
well. Kawasaki advanced another microscopic approach to

critical sound absorption. It was based on ACP theory and

is much less transparent, but only slightly different—in

fact, he uses Pixman's modification^^^ of the diffusion law,
though in a more rigorous way (as we do, in paper I).

Kadanoff and Swift^ have recently presented very general

theories for all transport coefficients in both gas-liquid

and liquid-liquid (mixture) critical regions. The K & S
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perturbation approach to the master equation is very com

plex. However, it is of the same strain as Fixman's and

Kawasaki's, in that it describes dissipative processes as

the breakdown of one transport mode into several others.

As such, it is called 'mode-mode coupling'. Unfortunately,

it is less successful with experimental data than the

other two theories.

The final generalization for critical region

transport is a type of corresponding states theory, called
o  <1

the dynamic scaling laws*^' , very similar in form to the

static scaling laws of Widom and others for equilibrium.

Kadanoff^^*^ reviews their experimental support, which is

incomplete in itself, and not very encouraging.

(paper I gives detailed comparisons of sound ab

sorption data with the various theories.)
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D. Fluids with Weil-Defined Internal Degrees

of Freedom

The first level of complication above simple

fluids is represented by non-associated polyatomic molecules,

which possess permanent multipole interactions (esp, dipoles)

and the new internal motions of rotation, vibration,

internal rotation (rotational isomerism, when rotation is

restricted), or simple dimerization equilibrium. These

extra internal motions and the multipole interactions coup

ling them allow the molecules to structurally store and to

transport additional energy and momentum. The coupling of

these motions, particularly to the external translational

motion sometimes so strongly as to merge identity with the

latter, alters the nature of collisions and of static struc

tural correlations. Quantitative changes from simple fluid

behavior are found in the equation of state (particularly in

the location of phase boundaries), heat capacities, and

transport coefficients; qualitative trends with pressure,

temperature (and frequency, for transport) are sometimes

altered, especially in polar fluids. Rotational reorient

ation or rotational diffusion^^® arises in dense fluids as

a new trsinsport process. In consequence, the electromechan—
109

ical response becomes interesting: dielectric relaxation

in (di)polar fluids, or in nonpolar fluids the lineshapes

for Microwave, IE, Raman^^^^, visible, and

NMR^^^. Static dielectric constant and strength and'
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Ilia
materialism are equilibrium aspects. Rotational

relaxation^^""^^'^^^'^^^ (as well as vibration, internal rota
tion, and dimerization) also makes a dominating contrib

ution to the old transport coefficient, the bulk viscosity.

We exclude from consideration very large polymers

or macromolecules, with yet more drasticsdly different prop

erties. For example, their transport even at modest freq-

il4 11*5
uencies is governed by v scoelastic equations » ^ rather

than Navier-Stokes equations. We leave untouched the large

field of rheology.

To be sure, much of the interest in properties of

such polyatomic fluids as we consider is still outside

our scope: color, reflectivity, and other electromagnetic

properties which are more utilitarian; chemical stability

and kinetics of degradation or reaction; and all manner of

chemical and physical behavior in complex, possibly multi

phase, mixtures. Still other interesting aspects are only

in part related to the simple equilibrium and transport

behavior we'll study, and may be touched on briefly, e.g.,

relaxation of artificially inverted vibrational populations

in chemical lasers^^^. We justify our artificial limit-/"

ations of interest on pure convenience, as well as on the

opinion that qualitative and quantitative xmderstanding of

these simple properties is the major work in understanding

all the properties of these fluids and by extension those

of the associated liquids, in particular the compound of
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greatest chemical and biological interest, water.

We have previously mentioned some new transport

behavior. We should now like to elaborate on some more

qualitative effects in properties, beginning with equilib

rium. Dipolar forces and orientation in the fluids,

especially dense fluids, cause imperfectly understood but

significant additions^^ to heat capacities and to the equa

tion of state. The melting and boiling transitions are

raised in temperature, and the critical constants* inter

relations are changed^®^. Empirical equations of state like

van der Waals or approximate virial still apply with more

error; more parameters are now desirable. In the correspon

ding states treatment^"^, the reduced dipole moment is a
necessary new parameter. Even in polyatomics which aure not

117
dipolar, there are new small terms in the heat capacity

and the virial coefficients^^ or other representation of the

equation of state. The well in the sj)herical-average pair
118

potential is also generally deeper in polyatomics , from

stronger dispersion forces, more densely-packed excited

electronic states. The liquid ranges are also higher in
119

temperature and the specific heats higher in value than

those of simple fluids, in consequence. The exact treatment

of the equilibrium properties must include the new mutual-

orientation dependence in the fluid structure. For example,

in the distribution function approach one uses a host of

coupled pair distribution functions^. These are a type of
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ffluids, and are quite difficult to use. (This is a proper

description of combined translation and rotation. Vibration

remains essentially separable even in dense fluids; some

120
subtle changes show up spectroscopically to give evidence

of the fluid structure and interactions.) The dimerization

equilibrium causes the grossest changes in equilibrium prop

erties. Its sensitivity to temperature increases the heat

capacity, to ̂ -5 times the expected value^^^^ in the case of

NOg. The volume change in forming the dimer modifies the

PVT behavior as well. The energy storage in the internal

motion, especially vibration, manifests itself in yet more

ways, even for gases. The restri©tion to quantized levels

may become evident at low temperatures. For example, the

molar vibrational heat capacity begins to 'freeze out'^^^®'

from its high-temperature value of R per vibration mode

as the temperature is lowered, but still well above room

temperature. Rotation freezes out well below room temper-
1 ooy\

ature. Quantum symmetry restricts the pairing of

vibrational with rotation levels in cases as Hg, causing

further divergences in heat capacities. Free internal rota

tion partially freezes to become few-state hindered

rotation of (for asymmetrical barrier) rotational isomer-

ism^^^'^^^ before it disappears.

The nature of molecular collisions is also new.

Momentum and energy are transported internally by the
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molecules—quite dramatically in the case of dimerizing

1 91 Vk

species; NO2 has 4-5 times the thermal conductivity

expected. Collision dynamics are quite definitely quantum

mechanical, particularly for vibrational excitation, as

shown by interpretation of ultrasonic data. The nature of

trajectories is also affected by the initial orientation

correlations imposed by the static structure. In dense gas

es, rotational relaxation or reorientation degenerates to

small, diffusive steps described by a new transport coeffi-
1 oft

cient, the rotational diffusion constant . Dipolar

molecules show strongest correlation and are probed easily

by dielectric relaxation^®^. This rotational diffusion

persists even in solids^^^. Ordinary transport—viscosity,

©onductivity, diffusion—is also presumably affected by the

new orientation-dependent packing and the anisotropy of the

interactions. "Piggyback" and potential contributions are

both altered. The changes in magnitudes of the transport

coefficients hjj'X , and D from simple fluid values are not

large^^^^'^^^'^^^ and the theory^^ is difficult, so this
aspect has not seen much work. On the other hand, the bulk

viscosity is greatly increased and otherwise affected by

the new internal relaxations possible. The extra energy in

the internal motions is traded around or exchanged with

translational energy at finite rates^^®' Time lags in

energy adjustment in response to temperature (or sometimes

pressure) fluctuations cause dissipation of the energy in
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I8f 19h
paasing sound waves ' . The study of this relaxation—

vibrational, rotational, rotational isomeric, and chemical—

is a well-developed and dominant part of ultrasonics. Time-

dependent order parameters (say, effective temperatures^^®'
19cr

of internal motions) are needed to formulate the relax

ation laws in the new 'dynamic' equation of state. Each

kind of relaxation has its characteristic dependence upon

P, and T, which is helpful in qualitative identification.

Detailed molecular models using quantum scattering theory ̂

are needed to explain the parameters of the empirical relax

ation equations ( or directly), Among the first successes

of molecular collision theory^ and the first uses of

ultrasonics were studies of relaxation in gases.

Chemical reaction, specifically the dimerization

we consider here, is an extreme limit of the interaction

of the degrees of freedom of two (or more) molecules. The

statistical mechanical description of structure in a reactive

fluid merits some discussion. A pair interaction defined

in a relative coordinate is an insufficient description

of binding. The,rotations, the vibrations, and even the

relative translation are totally recast with new energy

levels. The new quantization and new phase space alters the

partition function^^® and hence the thermodynaraic properties
rather intricately compared to the simply interacting mol

ecules. The interaction of the diraerized pair with a third

molecule is now given by a second effective pair potential.



Overall, reaction is too complex to be described in detailed

phase- space distributions as were simple fluids. More

phenomenologlcal groupings into all the monomer states and

all the dimer states are used, with thermodynamic parameters

and gross rate constants^^^'^^^'^^^.

The overall magnitudes of transport coefficients

for non-simple fluids are not greatly different from those

of simple fluids in analogous states of packing and temper

ature, but for the bulk viscosity and the new

isolated cases of other transport ( for NOg).

Both the equation of state and transport properties can

often be 'explained' in the framework of simple fluid theor

ies by using effective spherical pair potentials. However,

the resultant state-dependence of the effective simple

fluid parameters, especially trying to reproduce contrary

trends with P, T, or oj , is unsatisfactory. More elaborate

theoretical frameworks are then justifiable. Certainly we

will need them on the way to understanding associated liq

uids like water.

New probes are available for the new features of

non-simple fluids. All the common gases have been studied
16-20,112,113

by ultrasonics for their rotational and vibrai-

tional relaxation (actually coupled into one vibrational-

rotational-translational —VET—relaxation set). Initially

the studies were prompted by shock and combustion phenomena,

since bulk viscosity is unimportant in ordinary conditions.
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After initial triumphs of crude quantum explanations^^®'

ultrasonics and VRT relaxation were kept as a proving

ground for scattering theory, including classical and semi-

classical modifications^^^, and as an adjunct to molecular

beam and other experiments for determining intermolecular

113
potentials At low temperatures the relaxation times

18i
between distinct quantum levels have been piimed down '

193,132, I8j,19k,133a^ though in general multiple relax-

ation^®^'^^^'^^^ occurs and complicates analysis—even - /

worse in liquids. The dimerization kinetics of NO2 were also
133b

studied early and adequate interpretation of other prop

erties was made. Dimerization by H-bonding in acetic and

propionic acids has been studied in liquids^^®". Similarly,

liquids have been probed for vibrational relaxation, as in
181

GSg —though the new nature of collisions makes definition

of basic collision rates ambiguous Pure rotational

isomeric transitions^®^' are studied primarily by

ultrasonics, though the presence of isomerism was first

demonstrated^^^ by spectroscopy, electron-diffraction, cal-
orimetry, and dielectric behavior. Liquids are, in fact,

classified^®® as simple (no relaxation or excess sound

absorption from Kneser (distinct thermal relaxation

from a well-defined internal degree of freedom), and assoc

iated (modest excess absorption, nearly T-independent, etc,).

The characteristic w,P, and T-dependence of different relax

ation processes makes ultrasonics a good tool, rich in
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1 0*0
information. Dramatic cross-relaxation of one species

by another in mixtures has seen some work. Equilibrium

properties, especially in mixtures, are often taken^^*^ from

ultrasonic measurements.

Ill
NMR is another probe for rotational relaxatibav

or diffusion, at the Larmor frequency IR, UV, and

110
Raman lineshapes inform us of vibrational or rotational

relaxation at the vibrational relaxation itself. Dielectric

109
relaxation lineshapes probe rotational relaxation. X-ray

scattering^ may conceivably be developed for studying

orientational effects in liquid structure. Relaxation of

nonthermal vibrational populations inverted by light absorp-

tion^^^, laser scattering^^^, or chemical laser action^
is more precise for level-by-level studies.
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E. Equilibrium Theory

Our coverage of theory for non-simple fluids will

be more sketchy than for simple fluids. Some general obser

vations have been included in the previous section. Many of

the theories of ̂  B can be simply extended, van der Waals

theory and other few-parameter empirical equations give

about as good agreement with small non-polar non-simple

fluids as for simple fluids. Larger molecules such as

hydrocarbons require a greater number of parameters^^^, as
do polar species. Corresponding states treatments^™ are

good for small molecules and can be explicitly adjusted to

three-parameter form for dipole forces. Cell theories are

similarly used for polyatomic species with somewhat less

success^^ than for simple fluids.

Virial cluster theories and distribution fimction

theories, including PY and HNC approximate forms, are less

often used for polyatomics, for they do more in the rol§

of exhaustive testing as quite accurate, rigorous equilib

rium theory. The proper extension is to include multipole

forces and harmonically expand the pair function in orient-
ikp

ation angles. Pople and Buckingham have used cluster

theory with dipole and quadrupole forces added. Levine and

McQuarrie^^^ and Stogryn^^ have included higher multipoles
and proceeded to the third virial, for both ordinary and

dielectric coefficients in the first case. Frisch and Lebo-

witz^^^ have done a scaled particle theory extension.
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146 l47
Gibbons and Steele and eilso Buckingham ' have done some

less quantitative work at liquid densities. Steele and

49
Chen ^ have used angle-dependent PY theory through liquid

densities with encouraging results. Perturbation theories

52,117 leased on the free energy function with a hard-sphere

zero-order model are by and large inapplicable, as the angle

dependent forces so complicate the perturbation expansion as

to eliminate the advantage over more direct approaches.

<4 l48
Molecular dynamics^ and Monte Carlo calculations have

been done for a few moderately nonspherical potentials

including dipoles.

Dimerization, and solvation in mixtures, are too

complex for present a' priori theories. Phenomenological

theories are in use^^^^, at least for the deviations from

additivity of thermodynamic functions for mixtures in which

one component either self-associates or solvates the other.

Pure species' gas imperfection from dimerization is calcul-

able^^^^, but there is no treatment for dense gas or liquid.
In all, much more work has been done on empirical

representation of data on real systems than on a' priori

approaches. The latter must be greatly improved within the

simple fluid domain before moving up to more complex fluids.

Critical phenomena occur at higher temperatures

and pressures than in simple species, reflecting stronger

pair potentials. The critical compressibility factor

RqTq is altered from the general simple fluid value of 0.292
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by polar forces in particular, The critical exponents

are not detectably eiltered for the moderately nonshperical

molecules^ commonly studied. This indicates once more that

the critical region equation of state is not sensitive to

the exact nature of the intermolecular potential. Critical

exponents for dipolar gases, on the other hand, could be

very interesting. The generally stronger molecular inter

actions, within or between species, can lead to strongly

nonadditive thermodynamic behavior in mixtures. Regions of

(or even gaseous^ immiscibility and new

liquid-liquid critical mixing points occur. Here we have a

whole new field for critical investigations, often at more

convenient conditions of temperature and pressure. These

systems seem to behave analogously to gas-liquid critical

systems, with the appropriate transcription of intensive

variables^^^'^^^^. The few equilibrium exponents known ap

pear to be the same*^'^^^ as for gas-liquid transitions.
Liquid-liquid critical mixtures are more commonly used for

trsuisport studies than for equilibrium.
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P. Transport Theory

As for equilibrium, transport in non-simple fluids

is often handled by simple extension of simple fluid theor

ies. Now, it is often easiest to use effective spherical

models, except for and In light of the unspectac

ular differences among all manner of fluids in ordinary

transport, this is justifiable in large part. It is also

necessary in generating semi-empirical forms for transport
ci 11 i Q/|.

in mixtures * ' , quite a large'field. When one -does

explicitly consider the internal motions, there are more or

less evident corrections or generalizations of simple fluid

72
theory. The Eucken correction^®'^ for rotation can be

appended to the early- free-path models for gases with some

success, especially at elevated temperatures ®. It may also

be used with the Boltzmann equation solution^^ of Chapman

and Enskog. A more rigorous treatment is given by Wang-
86

Chang, Uhlenbeck, and deBoer for all sep^able degrees of

freedom as we are considering. There are also many models

151
of loaded spheres and other rigid bodies for which the

Boltzmann equation has been solved, in an attempt to

include nonspherical interactions in the repulsive core.

The dense gas and liquid are less amenable to such models,

87
as the necessary Enskog correction involves a difficult

pair distribution; molecular dynamics calculations are more

suitable. More phenomenological models have little diffic-

5k
ulty with polyatomics. Corresponding states-^ , rate
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process^^, and cell^^ theories gloss over so much detail and
8U7e so heavily empirical that the qualitative subtleties are

lost. They give often acceptable fits to data, as discussed

in ^ C, and are useful for semi-empirical calculation of
Hi

transport in mixtures . Reactions such as dimerization

are a complication tending to invalidate all but Eyring*s

rate process model, Browniein model are too in

accurate and undeveloped to warrant worries about the

anisotropy of interaction, though they are sdso used semi-

empirically for mixtures^^.
The rigorous formalisms which might incorporate

7iL
non-spherical molecules are principally Prigogine*s and

theory. The minor effort^^ on the gra

dient-dependent BGY pair distribution in the superposition

approximation has not been continued for either simple or

polyatomic fluids. It is inevitably inaccurate at tr\je liq

uid densities and is not a notable advance over competing

dense gas theories. Prigogine's theory has not been

explicitly developed for nonspherical molecules, again

because simple fluids (with their strong coupling) still are

waiting. Internal degrees of freedom are quite a complica

tion for the theory and apparently will make it a complete

master equation formeaism (internal quantum states are

resolved), while their inherently weak coupling makes them

better suited for study, given quantum scattering calcula

tions for excitation cross sections. The AGP theory, on
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6^£L
the other hand, has been used at least once^ , in conjunc

tion with molecular dynamics, on nonspherical and even

dipolar molecules, ^rot derived from the results,

along with more detailed information, principally on the

electromechanical response.

The two transport properties which really show the

new features of unassociated polyatomic fluids are 7) an!
V

Drot» have said in the previous section. In conse

quence. most theoretical effort has been expended on them,

including specialized theories outside the realm of the

other trfiuisport modes. Rotational diffusion is the subject

of several phenomenological theories. A mechanism of small

108
diffusive steps was proposed early by Debye and others >

and seems to be confirmed for larger molecules, while finite

random reorientations are proposed for smaller molecules^^^.

The internal relaxations responsible for the large bulk vis

cosity are usually approached by calculating the inelas

tic binary collision cross-sections, which are then plugged

into elementary free-path theories. As a result, the relax

ation time is the inverse of a simple Boltzmann average^^^

of probability of excitation per collision. Multi-level

relaxation is given inadequately; coupled relaxation equa-

tions^®^'^^^'^^^ for all the levels can be formed, again in

the free-path approxi tion for collisions. While the

more detailed relaxation process in dense gases and liquids

deserves much attention in statistical mechanics, most of
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the recent work in relaxation phenomena tries to improve the

realism and scope of binary scattering theory calculations.

Much of this effort, in turn, is expended on bimolecular

reactive collisions^^^, particularly simple exchange reac-

tions. The advent of better molecular beam"^--' and other '

139fl'^'0 techniques for direct observation 0(f partial cross-

sections has much to do with the resurgent interest in a*

priori kinetics.

The anomalous increase of y\ from slowed diffusive

decay of increasingly large fluctuatiims in critical fluids

gets the lion*s share of the attention, both theoretically

and experimentally. This is primarily because it is most

straightforward. The experiments for which are fairly

numerous (esp. in liquid-liquid cases) and are reviewed in
1

paper II, are readily done with ultrasonics. Fixman , Kawa-

2  3
saki , and Kadanoff and Swift give quantitative theoretical

explanations, which are discussed at the end of ^ C. The
3,106

djmamical scaling theory , an outgrowth primarily of the

last theory, touches upon the other transport coefficients
105

but is not very successful even for *>1^. ^ Fixman has adap-
103

ted his ideas for the shear viscosity Otherwise, crit

ical transport theory is unexplored. The experiments on **1^,

by standard^^'^^^ or torsional crystal^^^ viscometers, on >
11 12a 12b

again by stand6u:*d apparatus ' , and on D by NMR or
Ik 15

light scattering * ^ cover both gas-liquid and liquid-liqw

12a
uid phenomena. In aggregate the work is not definitive
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in establishing the existence and nature of anomalies in

these three transport modes.
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G. Associated Liquids

Some polyatomic species can hydrogen-bond into

extensive arrays in the liquid (and solid). Water is the

most famous example, while others are low-molecular weight

alcohols and polyols (e.g., glycerol), HP, and HCN.

H-bonding is weak^^^®" by the standards of chemical bonds,
but strong compared to the van der Waals forces binding the

types of fluids discussed previously. As a result, assoc

iated liquids have anomalously high melting and boiling

points, heats of transition, and surface tension. Water,

which bonds to as many as four neighbors, boils l62 degrees

above its congener HgS, The strongly directional character

of chemical H-bonds also shows in bulk properties. The

strong molecular alignment causes high dielectric constants

in these liquids^^^^. Water also has to great extent a
distinct, extensive three-dimensional network^^^^. This
contributes to its melting and boiling anomalies, high molar

volume, and high viscosity. Its thermaJL breakdown is

responsible for a large heat capacity and for its density

increase on melting and onlslight further warming of the

melt. Thermal conductivity is large through the semi-rigid

solid-like lattice, and compressibility is low. The lattice

structure is also broken down by pressure, leading to an

anomalous decrease in viscosity It is labile on a

short time scale , so that molecules do rotate and flow rather

independently. Self-diffusion, most reliably measured by
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NMR, is normal^^^'
The other associated fluids usually show less dra

matic anomalies. Most alcohols to modest size are somewhat

higher-boiling and the polyols in particular are quite

viscous, Glycerol is so extensively bonded as to have a

huge viscosity which^elaxes much like bulk viscosity does
1 Qr»

at modest frequencies ; relaxation is so slow at low tem^

peratures that it acts glassy. All, associated liquids show

a modest bulk viscosity which is in near constant ratio to
1 Qg 1 8"d

shear viscosity over the temperature range ^

In water, HP, and HCN the protons are very mobile,

unbonding and rebonding to travel, aided by their lightness.

Noticeable electrical conductivity^^^^ is found in the pure

liquids, and it is greatly enhanced by aolvation ionic com

pounds normally conductive themselves only as melts. Water

in particular shows great solvating power for a wide range

of substances. Great chemical and biochemical importance

accrues to water for its abilities to solvate so many spe

cies and to promote reactions, particularly those with ionic

intermediates. Solvation is accompanied by lattice break

down to smaller units, and by strong electrical forces,

Isotopic substitution of deuterium or tritium for normal
156

hydrogen makes noticeable changes in properties , princi

pally by altering the H-bond strength. In the vapor phase,

association is weakened essentially to dimerization, causing

lesser anomaJLies^^^^ in the gas imperfection.
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Associated liquids are certainly very difficult to

describe theoretically because they show cooperative motion

of very many molecules. The intermolecular potential is
l$6f

well-established as non-pairwise-additive, involving

three-body and possibly higher distortions. The short range

and directional nature of the H-bond aggravates the problem

of describing transport a* priori. There are some new tools

for help in qualtiatively understanding the added structural

and dynamic features. X-ray^^^^ and neutron scattering give
us pictures of inter- and intra-molecular structure. Water

shows such definite orientational effects that the lattice

like structure found in the 1930's prompted the cell models

of all liquids. The proton magnetic resonance^^^® is strong
and readily resolved into chemical chift and linewidth infor

mation on various environments and rates of motion.

Vibrational spectroscopy^^^^ is at its most informative for
associated liquids. While properties under normal condi

tions are heavily studied, the critical phenomena of assoc

iated fluids remain unknown, partly because of their high

critical temperatures and pressures (water: 373 C., 218 atm.

methanol: 2^0 C., 79 atm.).

The rather spotty equilibrium and transport theory

will be briaefly recounted in this one section. We will con

centrate on the story of water, with occasional comments on

other species. Most of the equilibrium theories for water

are heavily phenomenological and can be classified as t
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mixture models. A finite set of distinct chemical struc

tures is presumed in equilibrium. Each structure is assigned

an enthalpy euid specific volume (in interstitial models,

the smaller species—monomers—can hide in the free volxime

of major structures). Eucken^^*^ and Hall^^^ postulated
mass-action (straight chemical) models, based primarily on

the ultrasonic bulk viscosity. Both temperature and pres^- .

sure dependence of and are acceptably given in

Eucken's form. Application of Hall's theory to alcohols'

ultrasonic behavior has been attempted with slight success

159
since there is no density minimum, the thermal driv

ing term neglected by Hall is no longer small compared to

the pressure driving term in the dynamic equation of state.

A number of other workers^ have used similar chemical

models for water, obtaining the molecular parameters from

molar volumes, compressibilities, or radial distribution

functions.

Getting away from mass-action equilibria models,

Pauling and others advanced simpler interstitial forms

with one major structure. They have difficulty explaining

the high coniflgurational heat capacity of water. Recently,
1561

Eyring and others have given multiple-species models

for the partition function directly, sometimes including

vacancies, and all using extensive thermodynamic data. The

large number of variational parameters tends to make these

theories simply empirical fits, hard to test for reasonable-
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-ness of the parameter values. The general problem with

mixture models is the variability they imply for the envi^

ronments of individual molecules, contraindicated by the

narrow spread of dielectric relaxation times^^^^. They

also fail to explain the strong molecular alignment leading

to the high dielectric constant,

Pople^^^^ proposed distortion of a complete net
work of H-bonds to explain the observed radial distribution

functions, assigning a bending force constant for each bond.

The dielectric constant and volume decrease on melting seem

to come naturally from the model, while the viscosity from

such a model would be too high. The very characterization

of intact—perhaps bent— and broken H-bonds is difficult
1561

either macroscbpically or microscopically within any

model, however.

There are two recent a* priori approaches employ-
1

ing effective pair potentials, Ben-Naim performed a PY

calculation on water, having directly approximated the poten

tial of mean force. His results reproduce features in the

pair distribution but he does not compute properties.

Barker and Watts^^® did a Monte Carlo study on water, taken

to have a spherical potential plus a strong dipole. The

vapor has been the subject of virial cluster theory^^^® in
which it is characterized by a pair multipole potential or

by a dimerization equilibrium. Neither alternative is con

sistently good for the temperature dependence, particularly
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for the third virial coefficient.

In summary, there is no consistent and successful

nonempirical theory through an extended domain in the ther-

156
modynamic plane. Eisenberg and Kauzmann have collected

a great mass of experimental data and theoretical correl

ations for water, from which one might make more detailed

judgments.

Transport is more fragmented than equilibrium

theory, as most transport theories correlate only one such

property with some equilibrium or distribution data, and do

not cross-correlate transport data. Again, Eisenberg and

Kauzmann have assembled the data on water. Dielectric relax

ation in water^^^^ is interesting for its very small spread

of relaxation times, implying near uniform molecular envi

ronments on a quite short time scale (but not so short as a

vibration time, where a spread of environments shows up

spectroscopically^^^"^) • It also possesses a large high-
frequency limit indicating persistent rapid motions,

probably rotations. Generally, qualitative models are em-
16i

ployed to explain its behavior. Haggis, et al, used

their complicated mixture model of equilibrium among zero-

through four-bonded molecules plus postulates on simple

reorientational motions available to these species. This

theory also covers equilibrium and other transport, notably,

though it is highly parameterized. Rotational diffusion

apparently occurs at a slightly faster rate^^^*^ with a
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similarly low spread in co -dependence of the obviously

related relaxation it represents. Eyring's rate process

theory is used^^^° to obtain an energy of activation for
dielectric reorientations, which energy happens to match

that for self-diffusion and viscosity, tying them to some

common mechanism too.

Self-diffusion has been the subject of rate pro.-

cess theory^^^° only, to date. Neutron-scattering data^^^°

on the U) -dependence of D may soon be helpful in generating

better detailed models. Shear viscosity^^^^ is also given
only in a rate process analysis. Its decrease with pressure

at low temperatures supports the qualitative equilibrium

picture of network breakdown, with shear flow sustained pri

marily in the free (monomer) phase. Rate process theory

reflects this feature.

Bulk viscosity is curious in all the associated

liquids in that it has a ratio^^®'^®^ to Ag largely indepen
dent of T and P. Some underlying identity of mechanism is

apparent, while the only theoretical treatments cover only
157 . 158

and equilibrium. Eucken's aind Hall's models,

developed originally for ultrasonics, are rather successful

in correlating the bulk viscous behavior with the bulk com

pressibility and molar volume as functions of pressure and

temperature. For the very viscous fluids as glycerol, both

IQt
shear and bulk viscosity appear to relax together ^ in

frequency and temperature. Shear and bulk 'fluidities* or
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moduli are used in the largely empirical viscoelastic

m

.19u

19u 11^
description * , as they are now the additive quanti

A considerable spread in relaxation times is evident"

ties
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H. Mixtures Containing an Associated Liquid

Fluid mixtures quite commonly show nonadditive

thermodynamic and transport properties. Some of the largest

of such effects €ire shown by solutions in associated liquids

of unassociated species which are solvated by new H-bonding.

Aqueous solutions of organic amines or of higher alcohols

are examples. Some important features are large heats and

volumes of mixing and vf, as well as partial liquid
ikQc i62a

immiscibility ' leading in particulsir to lower con-

solute points. The anomalous properties of the associated

liquid may be much reduced in mixing, due to the structural

breakdown needed to accomplish solvation. The dielectric

behavior, thermal expansion^^^, and molar volume become
more normal. On the other hand, the heat capacity and bulk

viscosity have new contributions from the solvation equilib-
19t 163 16^

ria, with the latter being greatly increased »

The compressibility anomaly is increased^^^, which may be
unexpected at first glance; the shear viscosity is likewise

increased (see paper II, e.g.). Mutual diffusion is inter

esting, especially near the critical consolute point where

it vanishes.

Many simple fluid equilibrium theories have been gen

eralized to treat the odd forces in polyatomic and even

associated fluids, and also to treat mixtures. Cell theor-

ies^^^ and distribution function theories^^^ come to mind.
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but in any event these generalizations are largely formal.

They are mostly unexplored and very much more difficult than

the parfent theories. Pew, then, are up to the task of hand

ling both association and mixture behavior at the same time.

More often the work falls to more empirical theories from

physical chemistry, seeking solely to explain nonadditive

thermodynamic behavior in terms of the pure component param

eters. This separate handling of the association and mixing

problems gives a more reasonable return for the effort in

volved. The physicochemical approaches to nonelectrolyte

solubilities also gets much attention because of the direct

technological application of solution thermodynamics, solute
149

pfiUftition between two solvents, etc, Prausnitz* book on

solutions recounts in detail the physical bases for the

major theories. Again, few of these theories are adequate

for associated liquids, due principally to their assumptions

of simple-fluid equations of state for both components.

Many of them also require that volume changes or entropy

changes vf or sf vanish, making them extremely doubtful for

associated solvents. Several of them (Guggenheim's quasi-

chemical method; Flory-Huggins polymer^^^®'
l49f 168

theory; two-liquid theory ^ ' ) attempt a crude treatment

of the nonrandom mixing of the two components, the preferred

molecular aggregations in the process of solvation.

The most satisfying empirical tack begins with the

chemical theory of solutlons^^^®. Here explicit association
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chains (A + ^ 5^ A„) and solvation (A^ + B ̂  BA ) equil-
XI"" X ** n n

ibria are proposed, with quite simple progressions of

equilibrium constants and of AH, A V values for each step.

The activity coefficients, hence thermodynamics, of solvent

A and solute B are calculated from their true mole fractions

as free monomers. Many thermal and volumetric properties

are given reasonably well, However, the solutions of the

postulated species must actually be nonideal from additional

•physical* forces (difficult to divide from stronger •chem

ical* forces) to give any immiscibility^^^®. Eenon^^^ has
given the most comprehensive theory in this regard, one

which is fairly heavily empirical. Of course, the usual

objections to mixture models for associated liquids do imply

the inadequacy of Renon*s and other theories for some prop

erties, such as dielectric behavior, especially at low mole
163

fractions of the unassociated component. Andreae, et al.

tested the simpler chemical theories on the thermodynamics

and ultrasonic absorption behavior (see next paragraph) of

aqueous amine and alcohol solutions, but achieved poor

results and extracted only qualitative indications of the

refill structure fiuid dynfiunic processes. To close the dis-
150d

cussion, we note that Rowlinson regfiu»ds aqueous

nonelectrolyte solutions as the hardest, least understood

aspect of equilibrium phenomena, though a mass of data fiuid

empirical correlations has been obtained, as seen in the
1

book by Hildebrsuid fiuid Scott
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Dynamics are again a great problem. The ultrason

ic bulk viscosity is handled in the chemical theory of

solutions. Over and above the equilibrium constants and

thermodynamic changes for each partial reaction, rate const-

19t 163 16^
ants are fitted to the absorption and perhaps

163
some equilibrium data. Andreae, et al. achieved only

P6u*tial success. Qualitatively it is quite clear that the

relaxing solvation equilibria are responsible for the large

bulk viscosity; the relaxation times can even be resolved in

some cases. However, any adequate treatment should dynamic

ally generalize Renon's theory. To justify the effort in

obtaining the latter, one would require very precise ultra

sonic and thermodynamic data and would achieve only a

rather unwieldy semiempirical correlation. Advances in

associated liquid theory are highly desirable beforehand.

For the other transport phenomena, particularly

A , and D (dielectric relaxation and are generally

ignored), there are agAln formal generalizations of simple

fluid models. The generalizations of corresponding states

^7®, rate process^ , and Brownian theories have been

given, at least for mixtures of normal liquids. None is

particularly suited to mixtures containing an associated

component: pure associated liquids and normal fluids do not

have corresponding states; Brownian models have not been

used for associated liquids pure or otherwise, with their

complex potentials and hard-to-represent structure. Only
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rate process is sufficiently empirical, and it does not do

well for thermal conductivity^*^^, for example.

The liquid-liquid critical phenomena are quaaita-

tively different in origin from those in simple fluids as

discussed inf^D-F. The immiscibility and critical consolute

behavior in the latter arise from largely athermal mixing

which is nonetheless non-random (cf. the success of Flory-

Huggins polymer theory even for simple molecular mixtures^72

---this may be fortuitous, however); upper consolute behav

ior is the rule, with complete miscibility at higher

temperatures from the wiping out of the nonrandom structure.

On the contrary, the strong H-bohding in solvation by assoc

iated liquids most commonly leads to lower consolute

behavior. In many systems, the phase diagram is quite

skewed toward low mole fraction of the unassociated corapon-

ent^73^ The obvious occurrence of solvation equilibria

points to a large chemical contribution to the free energy

of mixing, hence the phase behavior. However, the analysis

of our own experiments on 2,6-lutidine/water in paper II

shows that the phase phenomena are hard to explain with chem

ical theory augmented by any simple physical (nonideality)

corrections.

As for the liquid-gas transition, the critical

region equation of state in liquid-liquid transitions is not

given by classical, analytic thermodynamics. After tran

scription of the intensive variables, the two kinds of
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critical points appear similar, as noted in^^D-P. For

example, the shape of the phase diagram (now in the X-T

plane, X= mole fraction) is cubic rather than parabolic.

There is less detailed information deep in the critical

region than for the gas-liquid Ijitoisition, however, so very

few analyses have been made for critical exponents. Only

for the C divergence and (3 for the coexistence curve shape
-P I2h

are reasonably well established . In transport, recei^jes
1  2

the most attention, from the theories of Fixman"^, Kawasaki ,

and Kadanoff and Swift^, As noted in f F, these gave the

first quantitative explanations of the anomalous critical

region absorption. The anomaly in the diffusive decay of

the fluctuations is now in mutual diffusive decay of rela

tive composition fluctuations at constant density. Some

recent work, as that in our following two papers, has at

tempted to show the identity in nature of liquid-liquid

critical phenomena at upper and lower consolute points.

Paper II indicates this is not clear, for at the lower con-

solute point the ultrasonic absorption from the critical

processes is partly obscured by non-anomalous but large

thermal relaxation (this has not been generally recognized
102 1

in investigations of other lower consolutes ' which did

not include the composition-dependence of absorption),

Furthermore, the separation of the critical and thermal

ultrasonic effects once recognized is still difficult, due

to the implicitly classical and wrong thermodynamics of
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the coexistence curve—hence also of the X-dependence of

in all three absorption theories. In general, we expect

that the dynamic critical exponents will be hard to pin down

and to compare among systems.

More realistic irreversible thermodynamics should

be worked into Pixman*s and other theories of transport to

analyze critical phenomena, complemented by better equilib

rium thermodynamics combining chemical and physical models

of the solutions. The pressure dependence of the consolute

temperature is also interesting. The excess volume of mix

ing gives a P-sensitivity to ̂  , through the X-dependent

free energy of mixing ̂  acquiring a term PVf, (See paper

II for a treatment of the extra ultrasonic absorption from

l49i
the harmonic variation of T^ with the sound wave's iP.),

For the air-saturated (hence ternary) solutions commonly

used, the nature of the consolute point as a true critical
175

point deserves some attention
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I, Concluding Remarks

We have reviewed the status of theory and experi

ment aimed at understanding basic equilibrium auid transport

properties of fluids, particularly in terms of the few most

basic molecular parameters and the classical equations of

motion. We have seen many shortcomings in our understand

ing, particularly in theory. In this final section, we

should like to speculate as to what advances are most needed

for describing liquids and dense gases.

In equilibrium theory, a list of 'reasonable'

expectations might read as follows: 1) use of a small basic

set of 'structures' to compose pair distribution functions,

as if in variational theory; or a more direct description of

liquid structure in a transformed phase space, not necessar

ily reduced uniformly to the two-body level—less sensitive

to errors in small regions of phase space; 2) better repre

sentation of molecular interaction than V(r), one with

capabilities for nonadiabatic encounters; complementing an

improved choice of zero-order degrees of freedom and (quan

tum phase space) states; and lending itself to flexible yet

simple mixing rules for unlike-molecule interactions;

3) more semiempirical entries into fluid theory; tractable

variational approaches to g(r)-l. and/or truncation of the

infinite heirarchy of BGY equations by use of simple, experi

mental, directly physical parameters describing the medium



71

of other particles; 4) overhaul of water structure descrip

tion—also aqueous nonelectrolytes; involving an overhaul of
169

mass action principles (cf. Renon's ^ work) by an appeal to

a simply-parameterized partition function still distinguish

ing chemical species on some few-body level; also involving

a rigorous few-body description of structures, yet with room

to describe cooperative effects as in dielectric alignment;

5) a coherent explanation of structural, largely chemical,

relaxation in aqueous solutions and of phase behavior (duly

noting its nonahalytic nature); 6) in elementary fluid reac

tions, an overhaul of the net representation of degrees of

freedom upon reaction; one which allows chemical species

distinction, and also remedies inadequacies of the pair po

tential description; 7) more detail on critical many-body

phenomena—on the location of on explaining exponent

differences sunong systems; real use of the liquid-gas conr-

nection, in a comprehensive theory for the dilute gas through

the liquid region; (b) better semiempirical, nonanalytic

thermodynamics for critical phase behavior, as for use in

Pixman theory; 8) developing spectroscopy in mixed/dense

media (with their increased number of degrees of freedom

and states) for details of internal motion interactions;

including linewidth information for 'state* lifetimes.

In transport: 1) modelling of correlation decays

in the few-body space parametrically; alternative perturb

ation summations from many-body theory, for new quasi-
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•7|l
particle descriptions generalizing Prigogine's' approach;

more studies on the functionality of f^^ in terms of f^^l
/1)

and of f in terms of gradients; formalisms for nonther-

mal processes; 2) less artificial connection of the various

time scales of evolution (collisional, kinetic, hydrodynam-

ic); multiple parametric representation of non-Markovian

time evolution; 3) clarification of the problem in density-

expanding transport coefficients; rational function repre

sentations; k) developing concepts of the nature of collis^

ions in liquids, especially involving polyatomic species;

probing the utility of quasi-particle descriptions or of

interrupted binary-collision formalisms; analyzing the boun

dary conditions and other aspects of getting a general form

for two-body motion in a medium; learning to average over

neglected degrees of freedom by adiabatic, stochastic, or

intermediate postulates—possibly in a uniform semiclassical

131
approximation ; clarifying piggyback and potential con-^

tributions; handling multiple relaxation, local nonequilib-

rium effects; utilizing the best resolution of elementary

flow patterns in phase space, perhaps reducing from auto-

correlation theory^ ; 5)handling the nature of collisions

and fluxes in water and aqueous solutions in particular;

remedying the inadequacies of pair potential descriptions;

pinning down the role of physical interactions and of the

recasting of degrees of freedom upon association; 6) devel

oping spectroscopy as a tool for details of nonadiabatic
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encounters, extending the equilibrium applications; 7) util

ization of the uf -dependence in transport (even in D, as

from neutron scattering for full inversion from thermal

and mechanical respnnses to the complete several-body dynam

ical features—a reversal of the ordinary procedure of

testing theories by predictive numerical calculations of

the response from the theory.

Our ultrasonic experiments and their analysis have

brought us up against several of the stumbling blocks noted

above, especially (^),(5)# and (7b) under equilibrium, and less

directly (^) and (7) under transport. The following two

papers outline our findings in these regards. The append

ices after them give the details of the apparatus, operating

procedure, calibrations, data reduction, and theoretical

fittings. We achieve limited advances in our qualitative

understanding of liquid-liquid phase behavior and structural

relaxation from these investigations. These are reviewed at

the end of paper II. To proceed further requires more com

prehensive experiment and theory. Specifically, we recom

mend more isotherms for absorption and velocity measurements,

including at least one quite far removed from critical, and

perhaps one in the two-phase region (separate measurements

in each phase, of course). Thermodynamic data on the phase

diagram and vapor pressure should be obtained, to numerically

evaluate the derivatives ^ plug into Pixman

theory in place of ad hoc, classical analytic approximationa



7^

This remedies the defects of classical thermodynamics, par

ticularly for the X-dependence of the absorption. It allows

essential testing of Pixman*s mode-coupling, and removes one

obstacle to separating GR and TR effects in . To remove

the other obstacle, the TR theory should be made quantitat

ively accurate and consonant with the phase behavior (free

energy of mixing) by generalizing Renon«s^^^ theory of
associated solutions to relaxation phenomena. Detailed

excess volume and heat of mixing data will be necessary to

fix the A H and A v v^ues for Reaction steps in the expan

ded model. The composition dependence for <3C in at least

one other lower consolute system—say, triethylamine/water—

should be observed (only the relatively crude level of the

present work is necessary) to see the uniformity in relative

magnitudes of OR and TR relaxations in lower consolute sys

tems. All of this extra work is probably within the scope

of one more doctoral research effort.
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Sound Absorption Near Fluid Critical Points*
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We retrace the thermodynamic and hydrodynamic analysis

used by M. Fixman (J. Chem. Phys. 3^, 1961 (1962)) in the

first quantitative explanation of the anomalously large

sound absorption near fluid critical points. With some

oversights and ambiguities corrected, the basic theory is

seen to be firmly based in classical thermodynamics and

hydrodynamics. The use of the Ornstein-Zernike, Debye, and

Flory-Huggins models for reduction of key quantities

appears necessary for thermodynamic consistency. For

analysis of experimental data, Fixman*s theory is preferred

over alternative theories, though no one theory is truly

satisfactory. With a view toward interpreting our data

presented in the following paper (J. Chem. Phys. xxxx,

(1971)), we argue the applicability of Fixman theory in

systems having a strong background of additional (thermal)

relaxation.
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Introduction

As a probe of energy exchange, especially in simple

fluid systems, measurement of the ultrasonic pressure

amplitude attenuation or absorption coefficient a and of

the sound velocity $ has shown much utility. 'Thermal*

relaxation of internal degrees of freedom, such as vibra-

tional, or of local structure, as in chemical association,

causes absorption and dispersion behavior whose details of

magnitude, temperature- and composition-dependence can

often be correlated closely with kinetic and thermodynamic

parameters of the system.^ Near critical points - and here

we speak specifically of gas-liquid and binary liquid-

2
critical points - additional strong absorption arises,

somehow tied to the presence of strong fluctuations in

density or composition, up to macroscopic size. Early

3
attempts at an explanation included Lucas' proposal that

the fluctuations undergo differential acceleration relative

to the bulk fluid because of their different density, thus

causing excess viscous losses; and work by Richardson and

4
Brown ascribing it in at least one system to an apparent

loss of energy by Rayleigh scattering. Both models fail

quantitatively, for both give too small a magnitude for the

absorption, and dependences on frequency not generally

observed.
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Using irreversible thermodynamics as a framework

unifying our treatment with that of ordinary thermal re-

laxation, we shall retrace the approach of M. Fixman,

which proved the first successful model. The primary ther-

modynamic quantity to relate to absorption and dispersion

is the effective complex compressibility (adiabatic) K ̂
s

giving the volume response of the system to the periodic

pressure perturbation of the sound wave, hence the measure

of reversible and irreversible work done. Substituting a

complex compressibility in the wave equation for the

pressure variation 6p,

3^ 6p 1 „
(1)

-1 2
where (pK) = $ = squared sound velocity, (2)

gives a solution

6p = 6p^e-«*e (3,

with a = Im K. (4)

To calculate K, it is generally sufficient to assume expan

sions of the volume and entropy differentials and £S in

the state variables^ (also sound wave progress variables)
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6T, 6p, and 6^; the latter is some order parameter for the

internal degrees of freedom:

6S = -^ 6T - ve" 6p + 65

6V = ve" 6T - VK^ 6p + V 65. (6)

The superscript ' refers to processes in the limit of

infinite frequency, where the internal degree of freedom is

frozen. The quantities C , 0, K„, and V"* are respect-
Jb^ ^

ively isobaric heat capacity, thermal expansivity, an

internal enthalpy, isothermal compressibility, and an

internal volume change. The first equation is used in the

form 6S=0 to eliminate one variable and to express the lack

of spatial heat transfer to first order during sound

passage. A simple 6V 6p relation to obtain is ob-

tained with the addition of kinetic equation for 6^,

assumed to be

6^ = 6^ — - L6Z. (7)

Here Z is some ordering force associated with 6^,

6Z = - £ 6T + V'6p + ((i65 , (8)
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and (|> is defined by the above equation. The total solution

is then

. = ^ I —^, (9)
^ Vi(i[l + (H')VTCp<()] f 1 + i(OT

with T = (L<|i)"^. (10)

This yields

and thus a typical relaxation curve for a, proportional to

co^T . We have throughout neglected the extra shear
7"T ^1 + 0) T

viscous and theirmal conduction losses, which require extra

terms in Eq. (1), since these are always additive for our

7
uses.

For our purposes, the internal degree of freedom is

the local density or concentration. Treating binary systems

more specifically, this is the local concentration (by mass,

volume, or mole fraction, as is convenient) C2 of component

2. Its kinetic equation (Eqs. 7 and 8 combined) is a

dissipative diffusive equation whose form outside the
,  Q

critxcal region is taken as
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P =2 = « (%) 'S +

Here y is a chemical potential y^^ - with y^,

chemical potential per unit concentration, and a, e are

constants; also ̂  = V" and ̂  = ((> in the terminology of
Eq.(8), This choice of kinetic equation describes the

baro-diffusion (6T = 0) or thermal diffusion (6p = 0)

mechanisms. The former yields a response of

6c, = —5- 6p , (13)
p (io) + ̂ 2^2^ )

where k is the propagation vector magnitude as in Eq. (3),

and an absorption

„  _ P6 (V)^ (o^T .
"  I — 7T—TT '

^  1 + 0) T

T  = a<(i/pg2 =

While <l> vanishes at the critical point, so does Dj^2

the absorption is not only finite but negligibly small.
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Fixman's Development

Clearly the diffusion of C2 follows a modified equation

in the critical region. The thermodynamic equations (5) and

9
(6) may also need to be taken to higher order. Fixman

realized that the differential of the local Gibbs ener^

density 6G from which (5) and (6) are derived must include

2
a quadratic tern in (6C2) , since the linear term is van-

sihing. Taking C2 as n2/ the molecular or molar density,

he obtains

dG

P/T
Mldni + Mjdnj

(Pl +
dp

3n.
5n, 6n2] dn2r (15)

where is the bulk or average value of y^. The Gibbs-

Duhem relation n^^dy^^ + n2 dy2 yields

dG = Pj^^dnj^ + y2°dn2 + [dnj ^ dnj . (16)

The relation of dn^^ and dn2 in the fluctuation is taken as

preserving the molar volume,

dV = dn, + dn^ s v, dn, + dn^—> 0,dn^ X 3n2 ~ ^ ^ X X (17)
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corresponding to isochoric propagation conditions which

can be related later to the proper adiabatic conditions.

Integration over the fluctuation volume yields

66 ~  ° PfT,nj^ ^^"2' (18)

for the anomaly-containing quadratic term. Additionally,

Fixman notes that we should make the replacement,

(inj) (5n,)^ + K |v6n,r / (19)

where k is the inverse correlation length of the critical

region pair distribution function g(R) in Ornstein-

Zernike^^ form.

G(R) = g(R) - 1-

R~>'

a ̂ -kR
R ®

aŷ

(20)

1
in Eq. (18) is pro-

2

K is very temperature-sensitive but

2
portional to k so this extra term in 66 is as a whole

negligible. Now make the good approximation

SS = |y

"2^1

3 y

_ „ (6n,)p ,ni 2
(21)
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We take some liberties with Fixman*s original presentation

from here on, as by keeping n2 as the concentration

variable rather than going over to the volume fraction ^>2'

our final result is unchanged.

The dynamic response of (5n2) must now be computed

from the diffusion equation with critical region correc-

tions. Now, (6n2) is not the square of the sound-driven

fluctuation, which can be made arbitrarily small by reduc-

2ing the sound intensity. Rather, (6n2) has a finite

equilibrium average related to the 2-2 pair distribution

function (R) = G(R);

consider

< Snj inj 1^2^ > = "2

Assuming Fourier decompositions of 6n« (S) and of G($) as

finj ih = fdit ng (23a)

G($) = |d^ Gjj , (23b)

a few manipulations yield

<«n2(S)^ ° ̂  [die + n2^ fdic Gg . (24)
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The first term is dropped if we are considering a volume

considerably larger than the fluctuation.

The periodic temperature excursion 6T due to the sound

wave alters the dynamics of the spontaneous fluctuations,

adding a correction to (<5n2) that is correlated to the

sound wave. The resulting energy exchange with the sound

wave has a phase lag and causes a loss or absorption of

energy. The dynamics of the decay of spontaneous fluctua

tions in the singlet distribution C2 are given by Fixman's

modified diffusion equation^^ (less the non-anomalous

direct driving terms in 6p, 6T of the sound wave),

P^2 " ~ ̂  . (25)

The diffusion constant product a(^ of Eq. (12) has been

2
written in the new variables h and ic , from the thermo-

dynamic expression for k in terms of in the

Ornstein-Zernike model.

4TTa ^1
n^

K  2

kT ^ 1
(9 w1/3 n2) ^ (26)

The relation dp = {Q/n^m^m2) is also used to express h
13

as
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h = 2.^ f , (27)
ITl^O ̂  2 TT ̂  ̂ ̂

where and <{)j^ are respectively partial molar

v61ume, molecular mass, weight- and volume-fraction con

centrations, and a is as in Eq. (26). The second or

correction term in Eq, (25) has been derived by Fixman^^

and justified as consistent with the critical-region form

of the free-energy density in a fluctuation.

The dynamic response of (5n2) to the sound wave

perturbation 6T is more readily expressed in terms of the

response of G(R), Intuitively, Fixman adapts the diffusion

equation (25) for the pair density G(R) simply by doubling

the diffusion constant h/2,

d = hK^ [V^G-k"^V^V^G] . (28)

The equilibrium solution to Eq, (28) is the proper

Ornstein-Zernike form.

G(R) —» I . (29)
R->-«

2
The primary temperature sensitivity is in k , such that

2

14
Fixman adds the term

d
h

K

3T
6T V^G (30)
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to Eq. (28). There is no way to treat a spatial dependence

of 6T, so the implicit assiimption is that the sound wave

length is very large relative to the fluctuation size, or

,  -1
sound ' (31)

this is consistent with dropping the first term in Eq. (24).

A perturbation solution in Fourier space yields a correction
o  o o

6Gj^ to the component = a/(2Tr [k +k ]), given by

2

«G]^ = iuifiGjj = - h k^(k^ + k^) «GjJ - hk^ f|^J 6T g| . (32)

The fluctuating excess entropy 6S of Eq. (21) is, using

Eqs. (21), (26) and (32),

kT h

6S = 6T- K')' f9T'' J 2 „ 2 . T *411^ ' " ' (k''+K')(iu + hk'(k' + k') ]

This is equivalent to an excess heat capacity per mole,

% = '^cZT Th^[+np"
Nq = Avogadro's nximber

which is clearly complex. The compressibility is then

computed from Eqs. (5) and (6) by altering to + A^^ and

neglecting the small direct driving terms in 6p and
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6C=5n2/ (H*'/T)6n2 and V26n2. We have, dropping super

scripts ,

6V = V06T-VK^6P, (35)

and from 6S=0,

° [■" - ^t] «P- (36)ir

Expanding (C + with assumed small and using

TV0 ^ "*^ = K -P V , (37)
P  P

(equality holds for Cp replaced by the net + A), we
obtain an absorption

° ~ IF ' (38)

where y= C /C„ as usual. This is Fixman's result. Morep V

rigorous attention to the mathematics, esp. in Eq. (37),

would show small differences for the true adiabatic

propagation conditions.


