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This whole episode arose from trying to verify that a silicon photodiode responds linearly to the flux 
density of light on it. 
 
If you’d like to skip to a treatment of how a direct beam (e.g., direct sunlight) and diffuse irradiance 
propagate through nicely layered media (a layer or layers of clouds; cell layers in a photosynthetic leaf), 
skip down here.  Note that that section refers to another fairly large document, which derives the 
radiative transport model but also has a lead-in about a good enzymatic model of photosynthesis (as I 
used in several publications) and a follow-on about leaf absorptivity decreasing with depth, leaf 
clumping, variation of leaf temperature (hence, photosynthetic rate) with depth in a canopy, and 
exchange of thermal infrared radiation among leaves. 
 
Utility of a light sensor (measuring irradiance) 
 
I’m planning to demonstrate to the middle-schoolers at our Las Cruces Academy a variant of 
spectrophotometry for chemical analysis, using a simple high-powered yellow LED as a light source 
shining through a sample of methylene blue to a photodiode as a detector.  I’ve done this similarly with 
crystal violet in the past, showing reaction kinetics of its decolorization in basic conditions.  Making the 
little (spectro)photometer also teaches the students a bit about electronics, hands-on.  We can also 
examine some basic optics, such as the falloff of irradiance from a point source as 1/r2. 
 
The sensor: a photodiode in a current-to-voltage op amp circuit 
 
I made a photodiode-based irradiance detector (call it a PID), using a current-to-voltage converter circuit 
with an op amp (see separate notes).   
 
Is the response linear?  My suspicions, and a failed test 
 
However, the responses seemed extreme, going from 190 mV output in direct sun to 0.1 mV in low 
room light – low, but that low?  (I set the max output to <200 mV so that it could be displayed on the 
small LCD voltmeter I bought, making a compact, portable light detector.)  I suspected nonlinearity.  I 
decided to test it, but this turned out to be rather difficult: 
* I didn’t have a series of neutral density filters or objects to stack up, testing adherence of the 
transmitted light to Beers’ law. 
* I tried stacking various numbers of pieces of white paper on top of the photodiode and then 
illuminating it with various sources (the stacking is a problem, as I realized later; a silly mistake).  I didn’t 
have a strong light source other than a laserpointer (several colors).  This is too hard to aim reliably onto 
the tiny active area of the photodiode, so I turned to the high-powered yellow LED, holding it a fixed 
distance above the PD (about 1 cm).  I got what looked like unusual readings: 

Number of layers of paper    V(out) 
 0         1.720 
 1         0.330 
 2          0.116 
 3         0.036 
 4         0.009 
Darkness       -0.005 (I made a dual voltage supply to check for zero offset) 

https://science-technology-society.com/wp-content/uploads/2017/12/Making-a-photodiode-light-detector.pdf


Ambient light                    (not recorded, but I recall it was about 0.004) 
 

 
How should diffuse light propagate through layers of scattering media? Radiative transport theory 
 
The falloff with added layers is clearly not exponential.  I decided to simulate how the diffuse light 
should fall off with depth in layered media that can scatter and absorb light.  After a quick stab at 
deriving the radiative transport equations, I found a 2009 derivation of mine (used as prep for 
accounting for scattered light in a pecan canopy), in ~/fortran/radtpt on both bilbo and bilbo2: see 
separate write-up, from Fixing approximations.docx (the first part is about photosynthetic enzymatic 
reactions, which might also be of interest).  It was a very clever solution, if I may say so, enough so that I 
couldn’t immediately recall how I came upon it.  There was the challenge that the calculations fail if 
there is no absorption of light, only scattering – there is obviously a limit, but it’s hard to derive by 
algebra, so I decided to run the Fortran program for it, canopy_abs+scat.f90.  There are denominators 
that go to zero if a  0, so I ran it with very small values of a, 0.001 or 0.0001.  This worked nicely. 
 
I set the parameters as follows: 
* aleaf = 0.001 or 0.0001 – making absorption negligible while allowing numerical solutions 
* sleaf = 0.5 – about 50% scattering in a unit depth (equally up an down) 
* xf = various, as depths of the scattering medium, from 6.4 to 89.6, after a quick estimate that the 
attenuation might be exp(-sleafxf) at first, and xf = 6.4 should then give attenuation to about ¼ 
* D0 = 1 – unit irradiance, as basis for seeing relative partitioning into various fluxes 
* I0 = 0 – no direct beam 
* fleaf = 0.5 –forward scattering of the direct beam (irrelevant here) 
* Kdiff = 0.5 – scattering (attenuation) coefficient for diffuse light; probably more like 0.7, really, but not a 
problem for the estimation I’m making 
* Kdir = 0.5 – attenuation coefficient for direct light – appropriate for uniform leaf angle and other 
isotropic scatterers 
* r = 0.001 – absorbance of lower limit (“soil”; here the PD) – complete absorbance, a rough 
approximation 
 
Results with only diffuse input: see simulation_attenuation_light_at_photodiode_detector.xlsx: 

xf refl., top 
abs., 
bottom Ratio W/0.001 --> 0.0001 

6.4 
 

0.383 
   12.8 0.758 0.235 0.613577 

  25.6 0.857 0.13 0.553191 0.864 0.135 
38.4 0.894 0.088 0.676923 

  51.2 0.912 0.064 0.727273 0.926 0.072 
64 0.922 0.049 0.765625 

  76.8 0.928 0.038 0.77551 0.948 0.048 
89.6 0.932 0.03 0.789474 

  
    

Not exponential! 
Here, abs.,bottom is the assumed interception by the photodiode 
 
Comparison with physical media, the stacks of white paper over the photodiode 
 
For comparison: 

My data with high-power LED, stacks of paper 
      

https://science-technology-society.com/wp-content/uploads/2017/12/Fixing-approximations.pdf


No. 
strips 

Voltage at 
detector 

Corr. for amb. light: -
0.007 Ratio 

Ratio, 
orig. Scaled simul., each step as 25.6 

  0 1.72 1.723 
       1 0.33 0.333 0.193268 0.195193 0.13 

    2 0.116 0.119 0.357357 0.069754 0.072 
 

<-- scaling reference point 
3 0.036 0.039 0.327731 0.02286 0.048 

    4 0.009 
        

     
Drops faster initially, then more slowly 

 Two pieces of paper acted like the simulation with xf ≈51.2, so I expected that xf = 25.6 would give 
something  like the measured attenuation for 1 sheet of paper.  The result is only crudely similar.  
There’s also a crude agreement for xf = 76.8 with measurements with 3 sheets of paper. 
 
Go for a direct beam only 
 
What I learned: of course, scattering of diffuse light is NOT like exponential attenuation of a direct 
beam; there are new sources in each layer: 
* I should detect only the direct beam, which means NOT layering the attenuating media on top of the 
photodiode – rather, inserting the media at a goodly distance away, so that the direct beam can be fixed 
readily on the PD, while diffuse light from its scattering is spread out thinly over a wide solid angle.  I feel 
sheepish for not recognizing this! 
*I can use a laserpointer as a strongly directional light source, while making it easier to aim by spreading 
it out with a camera lens. 
* It’s not appropriate to use layers of paper: they attenuate the direct beam far too much.  I did a 
simulation using only a direct beam as input, calculating the fraction of the direct beam left as (total 
irradiance at the bottom) – (irradiance from diffuse light at the bottom).   The latter quantity is D(xf), 
which, fortunately, I had the program print out. 

xf 

Tmn. = 
abs., 
bottom D(xf) 

Apparent 
I(xf) U(0) 

0 1 0 
  6.4 0.384 0.183 0.201 0.615 

12.8 0.238 0.197 0.041 0.762 
25.6 0.135 0.133 0.002 0.864 

Yes, only direct beam follows Beers' law 
  

Note that a thickness of one sheet of paper (roughly equivalent to xf = 25.6) should reduce the direct 
beam to 0.2% of its original value!   I should use optically thin scattering media.  I found that a stack of 
photo pages attenuates light to 20% (camera exposure reading was 1/500 s at f/7.1 on directly lit 
concrete,  changing to 1/200 s at f/5 for shaded concrete).  I used 13 pages and the sleeve, for an 
effective 16 pages.  Of course, this is diffuse light coming back, but it was attenuating direct light on the 
way in. 
 
This test will be done later 
 
Utility of the radiative transport model: making it more general 
 
My radiative transport model works when the medium through which the light is passing is uniform over 
its depth (physical depth, or optical equivalent depth, as is leaf area index in plant canopies).  I used it in 
simulations of light interception (plus gas and heat exchange in plant canopies), and a similar version in 
simulating the distribution of light inside plant leaves.  In the latter case, the layers differ in optical 



properties.  The top layer, or adaxial lamina, which gets the most sunlight, has the most chlorophyll and 
the  highest light absorption.  It must be modeled differently (that is, with different optical parameters) 
than the inner mesophyll and also the abaxial lamina.   
 
Setting up a general solution 
 
How difficult is it to “patch” layers together for a total solution?  The answer is that it’s straightforward, 
though sometimes a bit tedious algebraically.  Take the case of two different layers abutting each other, 
with the top layer (as of a leaf) getting both direct-beam illumination and diffuse radiation (skylight), and 
the bottom layer getting only diffuse light.  To review what are the givens: 

• The optical properties of the two layers.  Examine the list earlier:  
o the fractional scattering of intercepted light into diffuse light (sleaf), which I took as 

equally up and down; 
o the absorptivity (fractional extinction by a unit depth), aleaf; 
o the scattering coefficient per unit depth for direct light, Kdir, such that the fraction of 

intercepted (scattered) light per depth increment dx is Kdirdx.  Over a finite depth, x, the 
direct beam is attenuated to exp(-Kdirx); 

o the scattering coefficient per unit depth for diffuse light, Kdiff; it’s usually larger than Kdir 
when the direct beam is not at an extreme angel off perpendicular – the diffuse rays at 
wider angles (closer to parallel to the layer) travel a longer slant distance per unit 
vertical depth; there are many discussions of leaf optics, to which I have contributed in 
publications; 

o the absorption fraction at the bottom of the layer, r  – my photodiode, or soil in a plant 
canopy; for a free leaf, it’s zero, since the light exits unimpeded; 

o of course, the thickness of the layer, xf. 
• Three streams of radiation: 

o On the top surface, a direct beam of irradiance I0 (in, say, W m-2 or molphotonsm-2 s-1), at a 
known angle.  The angle, along with the medium’s geometry, sets Kdir. For example, for a 
plant canopy with a uniform distribution leaf angles, we simulate it as a continuous 
medium (turbid medium) with Kdir = 0.5 for normal (vertical) incidence or 0.5/cos(θ) for 
inicidence at an angle off-zenith equal to θ. 

o Also on the top surface, diffuse light at an irradiance D0, measured as projected on the 
flat surface.  For a uniform leaf angle distribution, Kdiff starts at about 0.7, but varies a bit 
with depth as more highly angled rays are absorbed or scattered (but, in partial 
compensation, more of the angled rays are generated by scattering1). 

o On the bottom surface, diffuse light at an irradiance Uf, with “U”denoting “up,” 
naturally. 

 
If there is only this one layer, the program gives the solution by the method described in the 
aforementioned document, Fixing approxmations.docx. 
 
Two abutting media of different properties 
 
We need a separate solution for each layer, specifying I0, D0, and Uf for each one (“f” is for “final” depth).  
For the top layer, I0 and D0 are fixed; the presence of a lower layer can’t generate more incident light.  
For the bottom layer, Uf is also fixed; the presence of a top layer can’t generated more upwelling light at 
the bottom of this layer. 
 

https://science-technology-society.com/wp-content/uploads/2017/12/Fixing-approximations.pdf


We readily calculate the direct beam irradiance reaching the top of the 2nd layer.  It’s simply I0 
attenuated by the exponential factor exp(-Kdirxf).   
 
However, we don’t know the downwelling irradiance at the bottom of the first layer, Df

1.  It’s affected by 
how the light propagates through the bottom layer, including the light scattered upward from the lower 
layer and generating more downwelling light in the upper layer by scattering.  Similarly, we don’t know 
the upwelling irradiance at the top of the lower layer, which becomes the upwelling irradiance at the 
bottom of the upper layer.  We have to figure out how to make each of  these two fluxes match at the 
boundary between the layers. 
 
A way out, and some necessary terminology 
 
The key to achieving the matching of fluxes is the linearity of the equations of radiative transport.  This 
means that independent solutions, each achieved with different boundary conditions (I0, D0, Uf) can be 
superposed, that is, simply added together.   
 
To keep track of fluxes: 

• The flux of diffuse light leaving the top of the upper layer, generated by scattering, we call U0
1; 

the superscript identifies the layer and the subscript identifies the location (“1” is at the top of 
the layer, “f” is “final” or at the bottom) 

• The flux of downwelling  diffuse light leaving the bottom of the upper layer is then D1
f. 

• The flux of upwelling diffuse light leaving the top of the lower layer is U2
0. 

 
First, we get “base” solutions with known, thus, fixed irradiances: 

• Denoted as B110: the fluxes in the top layer calculated with the known direct-beam and diffuse 
irradiances at the top of the first layer (e.g., the adaxial surface of a leaf facing the sun).  

o The subscript indicates that it has finite irradiance as the direct beam at the top surface, 
I0

1 (1st number in the subscript), finite diffuse irradiance at the top surface, D0
1 (2nd 

number in the subscript), and no diffuse irradiance propagating upward from the 
bottom, Uf

1 (third subscript).    
o The final solution includes diffuse irradiance propagating upward from the bottom of 

this first layer, but we have to compute this with a flux-matching condition that we’ll 
derive shortly. 

o This solution, B110, gives us fluxes that we will denote as: 
 U0

1(B1110), the upwelling diffuse flux at the top of this layer, exiting from the top 
as reflected diffuse light.  There will we more upwelling flux added to this, 
generated by the upwelling flux at the bottom of this layer, for which we will 
solve shortly. 

 Df
1(B110), the downwelling diffuse flux at the bottom of this layer.  Again, there 

will be more such flux, generated by upwelling flux from the second layer. 
• Denoted as B’100 the fluxes in the second or bottom layer, calculated with only the fixed 

irradiance from the direct beam that reached the top of this layer; this is readily calculated, as 
noted above.   Clearly, the prime indicates the second layer. 

o This solution gives us fluxes that we denote as: 
 U0

2(B’100), the upwelling flux generated by the incident direct beam irradiance. 
 Df

2(B’100), the downwelling flux generated at the bottom of this layer. 
o Again, there will be additional fluxes of these types generated by the downwelling flux 

at the top of this layer coming from the top layer. 



• Denoted at B’001: the fluxes in the bottom layer, calculated with only the fixed diffuse irradiance 
at the bottom of this layer – e.g., diffuse light on the lower or abaxial surface of a leaf. 

o This solution gives us fluxes with ready interpretations: 
 U0

2(B’001) 
 Df

2(B’001) 
Then we need purely “supplemental” solutions, with arbitrary incident irradiances (say, 100 units) that 
we can scale after calculating the matching conditions: 

• Note: not needed: Denoted as S010: fluxes in the top layer generated by extra diffuse irradiance 
at the top.  We’ve already accounted for the known and fixed diffuse flux at the top.  Although 
upwelling flux from the second layer generates downwelling flux in the top layer, the magnitude 
of this goes to zero at the top of the second layer – there’s a vanishing amount of scattering 
power at the top surface.  No extra downwelling flux is generated. 

• Denoted as S001: the fluxes in the top layer generated by upwellling diffuse fluxes at the bottom 
of this layer.   

o This gives us fluxes that we denote as: 
 U0

1(S001) –again, readily interpreted 
 Df

1(S001) - ditto 
• Denoted as S’010: the fluxes in the bottom layer generated by downwelling diffuse fluxes at the 

top of this bottom layer. 
o This gives us fluxes that we denote as: 

 U0
2(S’010) 

 Df
2(S’010) 

 
Basic algebraic solution 
 
We now have enough independent solutions to construct the full solution to the case in which: 

• There are two layers, plane parallel, each one optically uniform through its depth, but 
potentially different from each other.  We ignore edge effects and consider the layers are of 
great extent laterally. 

• Incident on the top of the first layer are: 
o  a direct beam of light (sunlight, e.g.) of a known irradiance, as projected on a horizontal 

surface.  Its magnitude is defined as I0
1.  We take care of an angled incidence with the 

proper specification of the extinction coefficient, Kdir; 
o diffuse light, of uniform angular dependence, of magnitude D0

1 as irradiance projected 
onto a horizontal surface.. 

• Incident on the bottom of the second layer is: 
o diffuse light, of magnitude Uf

2 
 
At the interface between the two layers the upwelling and downwelling fluxes are initially unknown.  
We have to solve for them using matching conditions: 

• The downwelling flux exiting the bottom of layer 1 must equal the downwelling flux entering the 
top of layer 2:  that is, 
   Df

1 = D0
2 

We take the fluxes that are already determined from the external lighting and add fluxes from 
scattering between the layers, with coefficients α (multiplying the test solution S001, for diffuse 
upwelling light entering the bottom of layer 1, generating some more downwelling light) and β 
(multiplying the test solution S’010 for diffuse downwelling light at the top of layer 2): 



 0
1 110 1 001 2 010( ) ( ) ( ' )f fD B D S D Sα β+ =   

• The upwelling flux at the bottom of layer 1 must equal the upwelling flux exiting the top of layer 
2: that is, 
Uf

1 = U0
2 

Similarly to the above for downwelling fluxes: 
 0 0 0

1 001 2 100 2 001 2 010( ) ( ' ) ( ' ) ( ' )fU S U B U B U Sα β= + +   
 
A critical test 
 
Take a single layer of what we’ll call full thickness.  I chose to call its thickness 2xf.  Allow direct and 
diffuse light incident on its top surface.  For simplicity any diffuse light incident on the bottom – the 
solution is trivially generalized. 
 
Get the solutions for the direct flux and diffuse fluxes exiting the bottom and for the diffuse flux exiting 
the top.   That is, solve for If

 (no need for a “1” subscript), Df, and U0. 
 
Now split this into two equal layers, each of thickness xf and solve for the exiting fluxes when the layers 
are joined and the fluxes are solved using the matching methods above.  That is, solve for If

2, Df
2 (which 

must equal Df from the first simulation), and U0
1 (which must equal U0 form the first simulation). 

 
For this test I chose parameters and inputs as follows, akin to sunlight penetrating a modest cloudbank.  
The parameters are still set as if were considering a leaf: 

• aleaf = 0.0001 – effectively, no absorption.  I can’t set this to exactly zero or the formulation 
breaks down 

• sleaf = 0.5 – per unit optical depth, half the diffuse radiation is scattered 
• D0, which is D0

1 in the two-layer simulation = 100, like watts per square meter 
• I0 = 1000 
• fleaf = forward scattering of the direct beam = 0.5 
• Kdiff = interception coefficient for diffuse light = 0.5; that is, an initial flux density is cut by the 

factor exp(-Kdiffx) in traversing a distance (optical depth) x. 
• Kdir = same for the direct beam = 0.5 – as if for a beam incident vertically on a canopy with a 

random distribution of leaf angles (I used this a lot) 
• r = reflectivity of the soil for light exiting the bottom = 0.0001 – absorb it all and count it up 
• 2xf = 3.0 

 
Results 

 
For the solution as a single layer of depth 3.0: 

• If
1 = 223.097 

• Df
1 = 405.398 

• U0
1 = 471.404 

For the solution as two layers: 
• Solution B110: Layer 1, with known incident irradiances 1000 in the direct beam, 100 diffuse: 

o If
1(B110) = 472.331 (a fraction 0.472 transmitted) 

o Df
1(B110) = 327.630 

o U0
1(B110) = 300.037  



• Solution S001: Layer 1, with notional diffuse irradiance, 100, incident from the bottom: 
o U0

1(S001) = 72.724 
o Df

1(S001) = 27.276 
• Solution B’100: Layer 2, with known direct beam irradiance on top (=If

1(B110) 
o If

2(B’100) = 223.096  (a fraction 0.4722 transmitted from the top of layer 1...and it equals 
If

1  of the single-layer solution, as it must, within rounding errors 
o Df

2(B’100) = 120.400 
o U0

2(B’100) = 128.833 
• Solution S’010: Layer 2, with notional diffuse irradiance, 100, incident on top 

o Df
2(S’010) = 72.724 – same as U0

1(S001), which looks like the mirrored case of S001  
o U0

2(S’001) = 27.276 – same as Df
1(S001), for the same reason 

 
Solving for the matching conditions: 
Downwelling fluxes, Df

1 = D0
2: 

0
1 110 1 001 2 010( ) ( ) ( ' )f fD B D S D Sα β+ =   

 327.630 + α 27.276 = β 100 
         or 
               β = 3.2763+ 0.27276 α 
Upwelling fluxes, Uf

1 = U0
2: 
0 0 0

1 001 2 100 2 001 2 010( ) ( ' ) ( ' ) ( ' )fU S U B U B U Sα β= + +  
 α 100 = 128.822 + 0 + β 27.276 
Substituting β from above: 
 α [100 – 27.276*0.27276] = 128.822 + 27.276*3.2763 
  α = 2.35736 
  Df

1 = 327.630 + 2.35736*27.276 
            = 391.929 
  Df

2 = Df
2(S’100) + Df

2(S’010)*Df
1/100 

            =  120.400 + 72.724*(391.929/100) 
            = 405.427  
                    Aha; this closely equals Df from the single-layer solution, allowing for rounding errors 
Finally, 
 U0

1 = U0
1(B110) + U0

1(S001)*Uf
1/100 

        = U0
1(B110) + α*Uf

1(S001)/100 
        = 272.761 + 2.35736*72.724/100 
        = 471.474 
     Aha, again – matches the single-layer solution, allowing for rounding errors 
 
The method works. 
 
Extensions 
 
Extension to more than 2 layers 
 
The method is clear, if tedious algebraically: Solve for the first two layers (with notional input from the 
bottom); recast this as base and supplemental solutions; solve for layers 1+2 matching layer 3. 
 
For non-layered media 



 
The radiative transport equations become 2- or 3-dimensional.  There are some interesting “tricks” in 
these cases.  For example, I simulated light within a regular array of trees, using some basic numerical 
methods but exploiting symmetries for ellipsoidal canopies.  Fully generally, Michaël Chelle at INRA in 
France has a powerful method called radiosity2, similar to that used in CGI simulations of lighting in 
movies.  You have to be serious about math and computing to use these. 
 
Footnotes 
 
1 Gutschick VP, Wiegel FW (1984) Radiation transfer in vegetative canopies and other layered media:  
Rapidly solvable exact integral equation not requiring Fourier resolution.  
Journal of Quantitative Spectroscopy and Radiative Transfer 31: 71-82. 
 
2 Chelle M, Andrieu B (1998) The nested radiosity model for the distribution of light within plant 
canopies. Ecological Modelling 111: 75-91.  
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