

 Part I: For someone with Linux and Python 2.7 (but, obviously, not our logic board):

Getting Python 2.7:
Many distributions of Linux already have Python installed. You can check by opening a terminal and typing

in the command
 apt-cache search python | egrep "^python2.[0-9] " –color
The egrep part filters out other stuff than the directory, which is all you want to see.
We used Python 2.7; earlier versions might work
If you don’t have Python installed, you can open a terminal and type:
 apt-get install python
RedHat and some other flavors of Linux need:
 yum install python
 OR
 sudo yum install python
You might need to get additional packages such as colorama or py.audio, using apt-get install XXXX. Linux

will tell you what you’re missing

About the program:
 The program adapted to use on a Linux machine is here, elements_linux_KB_no_GPIO.py. The
qualifiers KB_no_GPIO indicate that our special controls using buttons and input-output pins on a
Raspberry Pi computer had to be mimicked using keyboard inputs
 Compared to the Linux version of the program running on a Raspberry Pi computer, there are some
changes:

 Since most Linux machines other than the Raspberry Pi or Arduino lack general-purpose
input output (GPIO) pins and no one has a logic board controlled by the GPIO pins such as we
made, I stripped out all code using the GPIO pins
 Similarly, because anyone else’s machine doesn’t have the buttons we use to select items
(presentations, elements within presentations), we replaced all references to button inputs with
keystrokes on the keyboard. E.g., the line
 if GPIO.input(10)==1: # pin 10 is normally lo; green button; increment the element
number
has to be replaced by a reading from the keyboard, n=raw_input() and then tests such as
 if n=='g': # pin 22 is normally lo; green button; increment element number

 The program as we developed it uses colorama to print color-coded output on the screen. If you don’t
have it, you can get the package at https://pypi.python.org/pypi/colorama or apt-get or pip .
 Running the program is straightforward, with python elements...py. If you copy the program off the
DVD, be sure to keep the program and the narrations files in the same directory.

Running the program:
 This is straightforward.
 Open a command window. I always have a shortcut on my Desktop, but if you don’t, right-click on the

start button and scroll up to Run; click on it.
 In the little dialog box that opens, type in Run and then Enter.
 Change to the directory into which you copied the version of elements.py that you want to run – e.g.,

for the Windows version, it is the file elements_windows_KB_no_GPIO.py.

https://pypi.python.org/pypi/colorama

 Assuming that you have the PATH variable set so that Python can be run from any directory, such as
this one:

 Now just type in elements.py and Enter. Follow the prompts that tell you how to run the parts of the
presentations you want

 In Linux, you will need to specify python, usually:
 python elements.py
 With the GPIO pins used on our physical periodic table, we had to become superuser:
 sudo python elements.py

Part II: For someone with Windows and having Python 2.7 or willing to install it:

Getting Python 2.7:
Use the installer on this DVD (python-2.7.12.msi), or go to the official Python site (don’t risk malware

from other sites), www.python.org/downloads or, just for Windows,
www.python.org/downloads/windows

The installation is straightforward. However, it might not put Python’s executable application into your
Path Variable, which is necessary if you want to run Python from any folder other than the one
where Python got installed. Here are two links showing how to do this:

 https://www.youtube.com/watch?v=rWNhvq514Qs
 https://www.youtube.com/watch?v=Y2q_b4ugPWk
However, these don’t apply to all Windows variants, so, here’s a better way, for Windows 10 (and there

are similar ways to get to Control Panel in other versions):
 Find out (using File Explorer), or remember, where you asked for Python to be installed. Mine is

C:\Python27, handily
 Open the Control Panel – e.g., right-click on the start button (the little 4-panel window at bottom left)
 Click on User Accounts
 At left, left-click on Change my environment variables
 In the dialog box that opens, click on Path to highlight it
 Below that, click on Edit
 You’ll see a more or less lengthy text; you can add at the end (or middle, if you’re careful to keep all

entries separated by semicolons) a semicolon and then the name of the folder where Python is
installed. If my path had not been updated to include Python, I would have typed in at the end
simply ;C:\Python27

About the program:
 The program adapted to use on Windows is here, elements_windows_KB_no_GPIO.py. The qualifiers
KB_no_GPIO indicate that our special controls using buttons and input-output pins on a Raspberry Pi
computer had to be mimicked using keyboard inputs
 Instructions for using Python

 If you don’t want to install Python, see Part III below. If you want to use Python but don’t
have it installed yet, you can get it from many places, while the only fully trusted and up-to-date
site is https://www.python.org/downloads/, where you can also find instructions for
installation. There is also a Python msi installer for Windows.
 I think the basic installation has all one needs. If I’ve overlooked anything and the screen says
“module XXX not found” or the like, you can type a line in the Command Prompt window python
–m pip install XXX

http://www.python.org/downloads
http://www.python.org/downloads/windows
https://www.youtube.com/watch?v=rWNhvq514Qs
https://www.youtube.com/watch?v=Y2q_b4ugPWk
https://www.python.org/downloads/

 Compared to the Linux version of the program running on a Raspberry Pi computer, there are some
changes:

 Since a Windows machine lacks general-purpose input output (GPIO) pins and no one has a
logic board controlled by the GPIO pins such as we made, I stripped out all code using the GPIO
pins
 Similarly, because anyone else’s machine doesn’t have the buttons we use to select items
(presentations, elements within presentations), we replaced all references to button inputs with
keystrokes on the keyboard. E.g., the line
 if GPIO.input(10)==1: # pin 10 is normally lo; green button; increment the element
number
has to be replaced by a reading from the keyboard, n=raw_input() and then tests such as
 if n=='g': # pin 22 is normally lo; green button; increment element number
 The program clears the screen frequently so that all relevant text with instructions for the
program stay on top of the screen. We did this in order to use a tiny TFT monitor with room for
only 10 lines displayed. In Linux, the call to clear the screen is clear (invoked in Python with a
system call, os.system(clear)); in Windows, this is changed from clear to cls.
 To play the recorded narrations, the program on a Linux machine uses a system call
os.system(aplay somefile.wav), where the actual string somefile.wav is created with reference
to the element being looked at, such as discovery_of_lithium_narration.wav. The Windows
version has to use winsound.PlaySound(somefile.wav,0). The program has to use a line of code
import winsound.
 The Linux version uses colorama to color-code the presentation within a terminal. In theory,
on a Windows machine, one can get colors on a command window by installing ansicon
(http://softkube.com/blog/ansi-command-line-colors-under-windows, or
https://github.com/mcandre/ansicon-win) and also installing colorama itself: in a command
window, enter:
 python –m pip install colorama
 I used the second option to install ansicon 1.60. Alas, using it by going to the adoxa directory
and clicking on ansicon.exe opened a command window but in that window python was unable
to run....and I had to uninstall ansicon to get python to work in a standard command window.
This was in Windows 10, 64-bit OS. If anyone succeeds in getting colorama to run nicely with
Python, please let me know! Thanks.

 Running the program is straightforward, with python elements...py. If you copy the program off the
DVD, be sure to keep the program and the narrations files in the same directory. Note: Python.exe may
or may not be added automatically to your environment variable, which allows you to run Python from
any directory. In Windows 10 (and probably most earlier OS versions), go to My Computer, right-click on
it to get Properties, then select Advanced, then Environment Variables (you’ll need to invoke admin
privileges). In the dialog box, go down to System variables; click on Path, then Edit. At the end of the
line Variable values, add a semicolon and then C:\Python27 (or the directory where you installed Python
2.7, if you didn’t let the installer use this default directory).

http://softkube.com/blog/ansi-command-line-colors-under-windows
https://github.com/mcandre/ansicon-win

