
How fast can a rocket get going in free space (outside Earth’s gravity), as a function of how much of its 
mass that it burns up as fuel?  The answer is interesting.  I’ve written an explanation built on an analysis 
I made for a model rocket taking off from the ground.  I get a differential equation, but we can view it as 
some differentials to be integrated: 
 
The basic equation for a body is Force = F = dp/dt = (d/dt)(mv) (that is, the rate of change of momentum, 
which is mass times velocity) 
 
We have to be careful – there are two “bodies” – the rocket body and the exhaust gas left behind. 
 
At one instant, we have          |        A short time later, after burning a small amount Δm of propellant: 
            | 
                      v                        |                      v - vex                         v+Δv  
                 | 
      F                                        |                                               F                               Here, F is any other set of 
               forces, such as gravity + drag 
                                                                         That is, the “bolus” of exhaust gas is left behind, moving at the 
                                                                               original velocity v, minus its backward increment, -vex 
                      p = mv                                       p+Δp = Δm (v - vex) + (m-Δm)(v+Δv) 
             = vΔm - vexΔm + mv + mΔv –vΔm +  higher-order terms 
             = (v-vex-v)Δm  + mv + mΔv 
                          = mv +mΔv - vex Δm 
                                                        Since mv is the original momentum, we have Δp = mΔv - vex Δm 
 
If there’s no external force, F,  such as gravity (the rocket being in free space), the change in momentum 
of the gas trail plus the rocket is zero: 
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We really should consider these changes, Δv and Δm, as infinitesimals, or 
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We’ll do a change of sign here: dm is the mass of propellant lost; the change in the mass of the rocket is 
the negative of this, so we have 
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where we now are tracking the mass of the rocket, mr. 
 
Assuming that the exhaust velocity is constant (the same propellants continue to be burned), this 
equation can be integrated directly.   Assume that the rocket started at a velocity v0 before burning fuel 
and that its starting mass is m0 and its final mass is mf.  The left side of the equation is trivial to 
integrate, to vf – v0; again, let subscript f denote the final value.   Then we use 

 ln( ) (often written just as ln )dx x x
x
=∫   

where ln is the natural logarithm.  We can discuss this function in a bit.   We now have 
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This is interesting.  Suppose the rocket burns up half its mass; then, ln(m0/mf) = ln 2.  Let it burn up half 
of what remained, leaving it with ¼ of its original mass. Then, ln(m0/mf) = ln 4 = ln 22 = 2 ln 2, by the 
properties of the natural logarithm (ln xn = n ln x).  Thus, to get to 3x faster, it has to burn down to 1/8 of 
its original mass.  Only by burning to nearly zero can it get going much faster than the exhaust velocity of 
the gases.  Now, the rocket can’t burn down too much; it needs a certain amount of mass (propellant 
tanks, lines, combustion chamber, nozzle, fuselage...and, obviously, its payload), so let’s say 1/8 of its 
original mass is the best it can do.  It can then get to 3 times vex above its initial or resting velocity. 
 
Clearly, it’s best to use propellants with a high exhaust velocity – undergoing very energetic chemical 
reactions.   I’ll have a writeup about that in a trice.  It will include interesting findings about how to 
match the payload to the desired final velocity by using the right amount of propellant, what the 
maximal velocity is (when one hits the maximal fraction of rocket mass that can be propellant), how 
much the need for a fraction of the mass of the rocket to be structural strongly limits speed, how the 
nature of the propellant chemical reaction energy sets the exhaust velocity, how one can maximize the 
kinetic energy of the rocket (used in defending against missiles), and at what point in its trajectory does 
a rocket use fuel most efficiently to create its own kinetic energy (surprise: it has zero efficiency at blast-
off and again when it has used up all but 14% of its mass). 
 
About the natural logarithm:  I wrote up stuff by hand; I’ll attach it, too. 
 


