Scientists in any country other than the U. S. might need to convert measurements in SI units or other standard units to units used in the U. S. Here is a handy table:

```
1 light-year \(=\left(2.9974258 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)^{*}(39.37007874 \mathrm{in} / \mathrm{m})^{*}(3\) barleycorns \(/ \mathrm{in}) \mathrm{x}\)
    \(\left(365 \mathrm{~d} \times 86400 \mathrm{~s} / \mathrm{d}+6 \mathrm{~h} * 3600 \mathrm{~s} / \mathrm{h}+9 \mathrm{~min} \times 60 \mathrm{~s} / \mathrm{min}+9.55 \mathrm{~s}=3.155814955 \times 10^{7} \mathrm{~s}\right)\)
    \(=1.11724266 \times 10^{18}\) barleycorns \(=1.11724266\) milliards of milliards of barleycorns
1 liter \(=1.22835 \times 10^{-10}\) cubic furlongs \(=0.122835\) cubic millifurlongs
    ( 1 furlong \(=1\) furrow long \(=660 \mathrm{ft}\) )
    \(=4.193207\) millihogsheads
            \((1\) hogshead \(=63\) gallons \(=238.4810 \mathrm{~L})\)
    \(=4.399385\) decipottles
            \((1\) pottle \(=0.5\) British gallon \(=2.2730450 \mathrm{~L})\)
    \(=1.047438\) centibarrels (cranberry)
    ( 1 cranberry barrel \(=95.4710 \mathrm{~L}\) )
1 stere \(=1 \mathrm{~m} 3=29.3524\) firkins
    \((1\) firkin \(=9 \mathrm{gal}=34.0687 \mathrm{~L})\)
\(1 \mathrm{oC}=\mathrm{a}\) little bit more warmish
```

 (King so-and-so didn't even have a thermometer hundreds of years ago when the
 English system was set up)
 1 kilogram $=7.716179$ hectoscruples
$(1$ scruple $=5 / 6$ pennyweight $=1.2959782 \mathrm{~g})$
$1 \mathrm{~N} \mathrm{~m}^{-2}\left({ }^{*}\right)=4.01463$ milli-inches $_{\text {water }}$
(1 inch of water at 0 oC and under the gravitational acceleration at the mean sea
level and corrected for centrifugal force of the Earth's rotation= 249.089 Pa)
$=1.605296 \times 10^{-15}$ light-years of mustard gas at 60 oF and 1 bar at the equator at sea level
$=1.605296$ femtolight-years of mustard gas...
(This unit of light years of mustard gas was coined by my friend and colleague,
Dennis J. Diestler while we were in grad school at Caltech)
$\mathrm{P}=\mathrm{g} \rho_{\text {mass }}=9.80616 \mathrm{~m} / \mathrm{s} *(\mathrm{MW} * \mathrm{P} 0 / \mathrm{RT}) * 9.46053 \times 10^{12} \mathrm{~m}$
$\mathrm{P} 0=1.01325 \times 105 \mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-2}$
$\mathrm{R}=8.314413 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
$\mathrm{T}=288.716 \mathrm{~K}$
$M W=0.15908 \mathrm{~kg} \mathrm{~mol}^{-1}$
$\rho_{\text {mass }}=6.4148 \mathrm{~kg} \mathrm{~m}^{-3}$
$\mathrm{P}=6.22938 \times 10^{14}\left(\mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-2}=\mathrm{N} \mathrm{m}^{-2}\right)$
$35 \mathrm{~mm}=1.7398393$ millichains
$(1$ chain $=792$ in $=20.116800 \mathrm{~m}=20,116.800 \mathrm{~mm})$

Duly computed by Vince Gutschick, Las Cruces, NewMexico, actually a part of the USA; 2006

* Einstein, Newton, and Pascal were playing hide-and-seek. It was Einstein's turn to be the seeker. While he closed his eyes and counted to 100 , Pascal ran off, but Newton walked a short distance, drew a square 1 m on a side with chalk, and stood in it. Einstein opened his eyes, spied Newton, and said, "I found Newton." Newton replied, "No, you found Newton over 1 square meter. You found Pascal."

