COURSE SYLLABJS

BIOLOGY 450/550, Sec. M04 Biological Modelling Fdl 2007

Instructor: \ince Gutschick, Prof. of Biology
Room 103, Biology Anne Phone 6-5661 (diice) or 571-2269 (cell)

Class meets for the first session ioster Hall, room 481, 4:15-5:05, adhesday22
August. W will then find the best time and place fames/one for the succeeding meet-
ings.

Welcome to the fourth and finalfefing of the BIOL 550 course on biological mod-
elling. Thisis a graduate course intended teegyou a aimiliarity with a broad range of
biological models and to g you the &perience of dasing your avn models. In short,
| would like you to knav how to make and use modelsSimilarly, I would like you to
gan a critical viev, 0 that you can determine if other researchers are using models
appropriately and what these model®pfs insight.Let me first outline the intellectual
basis of the courseAt the end | will indicate what ark will be required and o grades
will be assigned.

THE SCOPE OF THE COURSE

The eact scope of models to be seyed will be set by all of us in consultation.
With my help and that of your classmates, we willveow models can be posed con-
ceptually then posed mathematicallgnd finally sohed either analytically or numeri-
cally. We will take sme models to complete solution, including models that must be
solved on the computer in an appropriate computer language.

The conceptual &frt in modelling as dstinct from the mathematicalfeft

Your level of mathematical xpertise should not be a barrier to successfuéldp-
ment and solution of modeldn biology, as in dl sciences, we all use models all the
time, at ag levd from werbal lypotheses to more quantitati gatements and to full
multi-process modelsl hope to demonstrate that there are discrete steps in making and
using models, in which much help sadable and much rgard can be had:

(a) Formulating the concepts/Me may use erbal or mathematical statements,
while in the end we will end up with mathematical statemefnitss is a hard step,
but very enlightening.We ae forced to say»@actly what we kna about the system,
or hope to knev. Inconsistencies are apparent once wee e nathematical state-
ment, and themay then be rectified.

(b) Setting up a mathematical scheme for solving the mod@s may mean
setting up a dferential equation, fon@mple. V& can do this on biological knd-
edge, primarily - that is, we can writewdo the descriptions of processes, such as
how ions and water might mee into plant or animal cells, where the boundaries lie,



etc.

(c) Solving the mathematical schemEere, we may find the limits of our
mathematical competencddo we knav how to solve dfferential equations of a
given order? Hov about linear algebra, or other topic§&rtunately there are se
eral stages of helpralable:

(i) Our ovn math epertise.

(i) That of our colleagues and classmatetere | can help you, dnang
on my background in mathematicalysits. Your colleagues may be able to
help, too. We may all learn together

(i) Literature examples of models of similar structure (notajs easy to
find, havever).

(iv) Programming languages and packages, which often include packages
to solwe ecific kinds of mathematical problemBor example, | rely on the
Numerical Algorithms Group dttran Library to preide algorithms to sok
differential equations accurately and free of errors in setlgny people rely
on inclusve nodelling languages, such as Stella or Mathematidaope we
can sharexgertise bgond my avn, the epertise that some of you v&in se-
cific computer languages.

Remember a basic principle of modelling in the computer age: computing
power is almost n&r a problem. You may knav only an ineficient or mathe-
matically "inelgant" way to sole a poblem, lut if it works, use it.In fact,
straightforvard, slav math is often easier to comprehend than agaatecom-
putational scheme (I can shoyou examples of both in my models)This
means easier for both you and your colleagues to understargtort, there
are two kinds of complgity: mathematical (or conceptual), which wevays
strive b minimize, and computationalNever worry about the computational
compleity, unless you attack such adarproblem that your computer will &k
a month to gve you your answer Elegant math can be learned, if needed, or
else borraved.

What kinds of models will we look at?

We will choose models of interest to the group and some models specifically of
interest to you indidually. |1 hope you may become confident enough ¢okwout your
own models for research without first looking at the literature for guidaite Nobel
laureate pisicist, Richard Fgnman, alvays tried his hand before looking at what other
people did; after all, it as the gperts who led us into whater impasse we find we must
overcome nav in our understanding.

We will focus on process models, which use wndaws of system bel@r (recom-
bination rules for geneticsytdrodynamics and thermodynamics foater flav; etc.), as
opposed to statistical models, which assume a rathedausb(and often misleading)
knowledge of hav the system warks. Classicaéxamples of statistical models are linear
(or nonlinear) rgression modelsThe empirical codicients mean nothing directly in
terms of processesConsequentlythe models cannot be applied tomegpecies, ne



geographic locations, ne climates, or whateer, without a n& fitting procedure.
Clearly, this cannot be done for future climates, so that statistical modedsahestricted
utility. They are very useful for day-to-day analysis of data with avnaunderlying
structure, bt they cannot be used taxgapolate to ne@ conditions. Ve will briefly dis-
cuss hw we may introduce significant bias into our interpretation by our choice of model
(linear additve vs. multiplicatve, for example).

A few topics assume importance in process modélmnmonly systems hee osme
conseration lavs, as well as "constitwe" laws. For example, mass must be conssav
in water flav, 0 that a paverful check on our models ofater flav in cells or in plants or
wherever is that we end up atvery time with as much ater as we started with.

GOALS
Let me state specific goals for the course:

(1) To illustrate hav models can be used foryaaf sevaal major purposes:

(a) Prediction of biological bekieor (plant, animal, coupled system of biota
with abiotic ernironmental processes, etcJhis is an ultimate objeete that many
of us set for our understanding, though it is rare that wer leidhe biological pro-
cesses so well that we can raakcurate predictionsSome predictie nodels hae
modest goals, such as models of light penetration to grouddieough a canop
gap, based on hemispherical photographs and avlkdge of the sus’ daily and
seasonal coursedlany predictive models are much more ambitious, hoping to pre-
dict the outcome of marncoupled processedAt great efort, such complicated pre-
dictive nodels can be made to function accuratelycourse. Oneexample is
GOSSYM, for cotton gmth, yield, and quality underavious emironments and
management practicefnother ekample is the set of models that predict macro-
molecular structure, based on thermodynamic ruleseatenearly from first princi-
ples of chemistry Yet another xample is preided by pharmacokinetic models of
drug delvery and action within a bodyr related models of rational drug design that
are based, forxample, on substrate (drug) - protein interactioB®ing to a lage
spatial and temporal scale, there are modelsdgetation as a carbon sink and tran-
spiration source in ggonal and global climate.

All such predictve nodels hae limits of reliability, a which point thg may
inform us (by our careful analysis) of what processes we bascribed poorly or
not at all. Then, the formerly prediate nodels become tools for seekingwne
hypotheses, as described in part (c) belo

Prediction may tak ®veal forms. Commonly we think of prediction of the
"state \ariables" of the problem - forxample, what is the final population genetic
structure in a gen environment, or what is a crop yieldlhere are complementary
ways to use a model, in additiofzor example, one may ask under what range of
ervironmental selection pressures we magezt two dleles to cogist indefinitely
rather than hang one allele (or whole genotype) gxtiact. Theanswer may also
depend on the population genetic structurew hwary dleles there are, o mary



loci exist, etc.

(b) Synthesis of our kmdedge of separate processes, to seek apthia
"emepgent properties."Emegent properties are those properties not apparent in the
individual parts.Phase transitions are the strongesingple of emeagent properties.
On a less biological &, one may say that the ability of an airplane to \filien
none of its parts can flis an emegent property On a nore purely biological scale,
we may ask if relately simple combinations of rate processes utklsolution and
on membranes can generate a "biological clock," with properties of entrainment and
ability to be reset in phaseTiming might be considered an inherent property of rate
processes, Ui that self-perpetuatingycles and their resettabilitgc. are emagent
properties. Whatther surprises are in storé€?an a visual processing system con-
taining only about 20 neurons actually direct compbehavior in insect flight,
including obstaclewmidance, prg recognition, and capture?

(c) Generation of xperimentally testableyipotheses. Thiss by far the most
common and produste wse of biological modelsMost of my published models
fall into this catgory. One example is my assembly of a model ofAhehole-plant,
whole-season yield andateruse eficiency (WUE) of alfalfa genotypes are con-
trolled by mass per leaf area and leaf-internal setpoint fgrad@@centration, or C
The model vas used to ask if WUE could be substantially increasedtioat of pre-
sent-day genotypes, and, if so, at what "cost" in yi@drprising results on mged
from the model, concerning constraints to inyimg WUE. The model \as also
field tested, with encouraging resultsA second &ample (J. Exp. Bot.
44(1993):41-51, and 48: in press) is my model af pant responses townutri-
ent aailability (increased root greth, increased kinetic capacity for upeak
changes in tissue nutrient concentration) enable plants to maintainehglaigh
growth rates under such stresBhe model indicated that tissue nutrient content is
likely to be afeature set pasaly by the balance between nutrient ugtakd the
nutrients uility in photosynthesis.Furthermore, the contuition of each adapte
response to enabling high grih rate vas quantifiable, with constraints also becom-
ing apparent.

(d) Inverse use: taking the obsed/results, plus the d&rng variables, and find-
ing out what structure the system musteéh& produce this.As an &ample, con-
sider a stand of plants, with ies paced in a driety of positions and atavious
angles, with a yet-unkmmn leaf reflectance.Sunlight is incident on the stand,
including difuse sklight with a specific angular distuition. Lightis reflected at
various angles, and it also penetrates probabilisticalyndim \arious depths in the
canopy. A directmodel tales the incident light and the calogiructure to predict
the reflected or transmitted ligh&n inverse model tales the incident light and the
reflected light distribtions, and attempts to determine what cgnsipucture pro-
duced the resultOnly a fav cases are straightfoexd - for kample, if light pene-
tration probability P drops as amp®nential with depth L, P =&, then we can
determine L as -(1/K) In P (if we also kmahe etinction coeficient K). Most
inversion attempts are much more complicatBeécause cangpreflectance models
are almost avays numerical, there is no simple mathematicaywo sole this



problem. Onesnds up searching parameter space, in an enlightagieidi. Impor
tant questions remain, such as, Is the solution unique?

A special topic that a fe of you might be interested in is neural netis, which
might be described as finding patterns without processlkdge. Neurahetworks
use the results of mgrrepeated runs withavying initial conditions to become
trained to recognize structural featurdhat is, one runs a canppeflectance model
10,000 times with aariety of specified cangpstructure and lighting conditions.
The neural netark tries to use the reflectance results to guess at theycsanog-
ture; when it errs, it is corrected and randomly readjusts neural connections to try to
improve its prediction succesdMe will also see neural netwks in connection with
optimization problems, in section (5) beloNeural netwrks are of restricted utility
in biological modelling, bt you may find one profitable to use laserwe will note
them.

(2) To show the scope of biological phenomena to which models can be applied suc-
cessfully and profitablyThese phenomena range in scale from macromoleculavibgha
through the leels of a cell (sayion channel action), a tissue (such as skin viscoelastic
properties), an gen (root water transport based on ion transport andiérsgble thermo-
dynamic dwving forces), an indidual (grawth, cardivascular dgelopment of an animal
embryo), a population (recruitment dynamics of maringertebrates), a community
(species competition and thgigtence of imasion-proof stratgies of interspecies com-
petition), and ecosystem befar (succession, trophic structure), and finally to the globe
(climate as dependent oegetation grawth and @s &change, or viceersa). Thenod-
els range from pure structure (assembly rules for membranes or ecosystems) to structure-
function relations (consider theamples abee). Thestructure and function need not be
directly ptysico-chemical. &r example, there are models ofatution in populations,
based on processes at higheele (genes, enronmental selection, etc.Animal beha-
ior is modelled at aery high level, or, we may say a very derved levd, so as not to
impute \alue to the scale.

In addition to models of o systems golve with time or hit stable structures, we
might consider gme-theory models of competition as special cakethese models, one
considers tw or more players (competing indduals, or an indiidual in a \arying ewi-
ronment), with cost and benefits tarus plastic responseslhe set of responses
deployed by an ayanism is entitled a stragg. Game theory computes the net benefit to
each player when tlganteract. Itcan be used to decide if cagtence is possible, with
fixed stratgies. Itcan also be used to determine the optimal glydier each playeland
this stratgy may be one thatvies randomly with time, folleing a plan to deplpdiffer-
ent stratgies with diferent frequencies.

(3) Similarly, to show the scope of ays that models can be madghere are simple
"back-of-the-emelope” models for he gene frequencies stabilize without (mee with)
selection pressure, such as the Hardginbeg law. There are models of relady few
coupled processes, such as thegehar von CaemmereBerry model of photosynthesis
in C; plants (which, for its relate smplicity, synthesized a great deal of kmedge and



shaved common patterns in responses of ynaant species to mgrenvironmental con-
ditions). Thereare "monster models" ofewy maly processes or inteelated structures,
such as crop models or the more elaborate prededpmodels. Thesbave vey restric-
tive wlsefulness and armtthe level for which we aim in general.

Pat of the range of models is in their mathematical structure, which reflects their
conceptual structurel-or example, there are process models for time-dependent changes,
vs. structural models for stable structures or fav Bioucture emeges from simple rules.
Process models may be discrete in structure (age classes in a population) or continuous
(solute transport in a fluid)in continuous models, we typically getfdifential equations.
These may be first-order or higher in the timedése invaved. Ourknowledge may
be of initial conditions grdternatvely, of boundary conditions (ta points at the ends,
such as our knaledge of sound avepropag@tion in the cochlea of the earjhe con-
cepts set the model structure, ultimatéiye may not vant to sole a dfferential equa-
tion, so we might discretize a problenut ve must learn to recognize what structure is
demanded by agen problem.

One important distinction is between deterministic models and stochastic miodels.

a deterministic model, there is a éd structure to the system or a wmocourse (such as
blood-vessel branching pattern and elastic properties) i they devdop and age, if this
occurs by knan rules). There is, as well, a unique state of theidg variables (temper
ature of embryo delopment, nutritional suppjyetc.). Theend results are then unique.
In stochastic models, either the system structure or thmginariables hee inherently
random wariations. V& ae then modelling not a unique statet b statistical distrilstion

of states. Quite diferent mathematical techniques, and interpretations, are demanded.
Some gamples are relately simple - computing the probability of light penetration into
a anopy, o the mean time tox¢inction of an allele in a population undeing genetic
drift - and can be formulatedkgicitly, or "analytically" Othersare more compieand
require sophisticated numerical solutions.

There is a meeting ground between determinism and stochastantely chaos.

This is a hot topic todayChaos is behaor that becomes highly unpredictable at long
times for small diierences in starting condition§Veather is a classicakample. Ifwe
knew to very high precision the state of motion of all parcels of air and ocean, etc. at one
time, we wuld predict a certain state dwveeks later If we had a ‘ery slightly diferent
initial state, we might predict aewy different state tew weeks later Chaos arises from
nonlinear processes onlyin linear systems, rates of change oy aariable, sayx;,
depend only on linear combinations @friables X, X,,... andnot on X or x;x,. These
systems ha&e ar unvaying periodic behdor, so that future states are predictable from
combinations of "eigenstates” with precisely wnobehaior in time. This brings up an
important point about mathematical structure, nanibht one often "linearizes" models
of processes for simplicity of solving them and because onestimat only a modest
error is introduced.However, nonlinearity that is more significant can be the basis of
chaotic behaor that is real - in weathem opening of plant stomata, etéVe nust be
awae that we are not biasing our predictions to get "nice" answers without ddates.
that, een with chaos, the long-ternverage patterns may be highly predictable, such as
storm tracks, while the indidual run may be wholly unpredictable.



One field of possible interest is selfyanizing systems, wherein orderly structures
arise from initially random initial conditions, such as membraggcles forming from
dispersed lipids.Another &kample is oscillatory patterns in time and space in some
chemical reactions (tek as crudexamples of biological clocks, none of which has yet
been identified in real ganisms). Self-aganization irvolves nonlinearity of interactions.
| am no expert here bt can guide you to the literature andypde some discussion if this
is an interest of yours.

We ae unlikely to get into the subject of controllability of a system, which is typi-
cally an engineering problentowever, the topic does apply in some biological systems,
such as biomechanics of animalvament or neural control of hormone systentisis
strongly related to nonlinearjtgs well as to time lags - both can induce uncontrollable
behaior - either truly chaotic, or not within designed limits of departure from a desired
setpoint. Ifyou are interested, | can direct you to some readings.

(4) To give you some guiding rules, anglea more intuition, about he one should
balance empiricism with process detai3onsider ha one might describe stomatal con-
ductance in plant leas. We know that it responds to light, temperature, plaatev sta-
tus, etc. Should we ma& conductance equal to a function of light, times a function of
temperature, times a function of humidiggc.? Onewould then try to measure man
parameters for each response; indeed,ynpaople hae tied this. However, is this the
way that light, temperature, etc. really interadf®hat about addie nmodels, or inbe-
tween? Leime cut to the answer: to &y close approximation, conductance is prepor
tional to photosynthetic rate (it is paced to photosynthetic rate, by sensors in leaf cells
that respond to the drsalown of CO, concentration), multiplied by the rehagi humidity
at the leaf sudce. Ifone attempts to formulate conductance as a response to light times a
response to temperature (asaties wer a day, for example), then one will confuse ow
effects of temperature: its agdtion of photosynthesis, and itdett on relatre humidity.
One will get a complicated model of limited accyratf, in contrast, one pays attention
to what is knavn about processes (conductance is proportional to photosyntkieises o
wide range of conditions, and it responds to transpiration rate imgaiiveefeedback
loop), then one can get a model with rather parameters that will be accurate to a high
degree. Shallve go furtherto show how the apparent response to humidity desifrom
a response to transpiration rate and a balancing ability of the plant to conatecttor
support transpirationne will gain \ery little in accurag of describing conductance,
while adding may parameters needing to be measuré&tie only reason for the great
effort is to prave that the tvo balancing processes dgpdain conductance, which is a sep-
arate inquiry from making and using models to predict conductance under aanetyg v
of ervironments, sayto predict \egetation effects on climate processes.

A broader topic about comply in models is computabilityln most process mod-
els, this is not a subtle issue - if the model is fedhtial equation, there is a kmo scal-
ing of computational &brt with the size of the problem (number @riables, number of
time steps, etc.)With some models, especially optimization models verse models,
the issue of computability can aris@hat is, the time or &rt needed to sotva poblem
rises fster than the number of itemsafpables, gme players, etc.) raised to a simple



power.

(5) To show you the pwver - and the limitations - of optimizing models.have
already mentioned that | Y& nade a model of o wateruse eficiency and yield (or
growth rate) is controlled by tavplant traits. We might postulate economicalues (or
Darwinian fitness alues) to graith and yield, to get a single "objaaifunction” that we
seek to maximize (or minimize)\Ve ®ek to get the maximum or minimum by choosing
the best combination of system parameters, such as dhgamt traits noted in thexam-
ple earlier All of the cost-benefit models of plant or animal responses, management
practices, etc. are in this class of optimizing models.

Optimization models stand in contrast to simply deseeptiodels, which describe
how the system functionas pesently constitutedOptimization models can guide us to
economic benefit, atously. They can also tell us if @anisms hae esolved to an adap-
tive endpoint. Comersely, when oganisms (or populations, etc.aif to meet our opti-
mization criteria, this tells us that we aneedooking an important selection pressure that
acts on a separate measure of fitness (sineral nutrition success in a plant, while we
were paying attention originally toater use alone)Falure to be at an optimum pheno-
type may also indicate that selection has not had enough time to act to change the geno-
type and phenotype disttibon. Oneexample is plants not responding adegti (opti-
mally) to eleated CQ concentrations in the aiising over only a fav generation times,
esp. for trees!An example of competing optimizations is that of plantsifg more
chloroplyll and thicler leares than will gve maximal photosynthesis and gvih in
monospecific stands - thérade of some gravth aginst the ability to shade competitors,
it appears.One of my mild obsessions is the opposite of optimization problems: if an
optimum (sayin plant water relations, combined with mineral nutrition) is s@iobs,
why aren't all plants of one genotypeWhy is there persistent genetianvability in most
genetic loci in most ganisms? Thechallenge is to find timearying selection, which
favors one genotype, then another frequeng-dependent selection, or whate We
often look at @erage conditions and gkect the rare occurrence ofteeme conditions
that are critical in molding a populatiohwill show a few examples, as in plants suwvi
ing drought stress.

Optimizing models require a special conceptual sethgo.example, we must kivo
what \ariables (genetic traits, e. g.) can be adjusted, and whether owyratoavariables
can be adjusted independently of each other (vs. being constrainedaxycoWe learn
a lot by thinking about which possibilities are alked. Optimizingmodels also can call
for special methods of mathematical solutidn.simple cases, one can set up the condi-
tion that the deviative d the objectve function with respect to each trait is zero (for con-
tinuous traits). The math is well definedln other cases, the set of equations becomes so
complicated that the optimum must be sought by "brute-force" searches in the "space" of
parameter &lues. Thecomputation time easily becomes insupportable, so that one must
use some inn@tive £hemes to get approximate optimanong the methods of solution
are the use of neural neivks and the use of "genetic algorithms" (programs that com-
pete with each other to specify the state of a systemyépdicate with more or less suc-
cess, according to which algorithms are closer to an optimal soluliogy. have other



uses, too).

(6) To show some other aspects of modelling that are not readilygoaized in the
above 5 tems. Br example, there is fuzzy-systems thedoyuse when we hee a kowl-
edge of the system that is more qualathan quantitatie, but which nonetheless can
yield firm decisions (as in control actions).

(7) To instill in your work what we might call a "5-D" approach to making and using
models:

Definethe state ariables and the parameters cleadgrefully. What entity
controls which other entity?This is usually straightforard, as in deciding to
model hov leaf photosynthesis is controlled by leaf temperatiirgets complicated
when there are feedback&or example, photosynthesis then determines stomatal
conductance, which determines transpirational cooling rate and thus the leaf temper
ature. Thereal drving variables are then air temperature, solar radiation, and
humidity. Feedback loops can require some thought and some attention to stable
mathematical solution,up there is allays a vay to handle them.

Do aDimensional analysisWhen you write an equation, the units had better
be the same among all terms, and on both sides of the equHtmme term is in
units of per day (such as relatigowth rate) lut another term is in grams per day
then you hae made a mistad - @ther typographicallyor in negecting a process.
Dimensional analysis is a werful way to check all models.

Dehlug the formulas and the computer prograitake sure that output is com-
puted properly numericallyoy performing hand-calculationsThis is something of
an art, and no onever finds all the errors in a big progranutlone can become con-
fident that the unfound errors occur only in rare conditidien the initial equa-
tions can be delgged. Ighe predicted bel#r reasonableFor example, one may
look at a formula and ask if a plant’s relatigowth rate increases with its nutrient
content. Ifit doesnt, then you probably va an error.

This brings up a strong opinion of mine, about modalithation.” For lamge,
numerical models, one cannot check all the intermediate stBtessxample, an
ecosystem produeity model might ivolve il water balance, plant phenologir
and soil temperatures, etc. at mapatial locations and timedn using the model,
one commonly obsees only some coarse weather conditions and final biomasses,
not the detailed course of soibter etc. Onethen hopes that the agreement of the
final results alone, between the model and the real system, is a cheek afclie
rate the model isThis is not true, and the situation is to beided if at all possible.
Never make a nodel bigger than you canfafd to check in detail agnst reality
However, dimate modellers and others are in this bifdne can at least guard
against a biased attitudelhe \ery term "alidation" implies that you are going to
prove your model is correctA more fruitful attitude is to check, without bias, if
your model is correct, owven to try to shav how and when your model is wrong!

Documenthe model and the computer prograhguarantee that one year after
you write a computer program, you will\legeat dificultly even remembering



what it does werall, much less what each calculation inside it is ifioyou do not
have vey mary descriptve owmments in the code (as nyaes fveaal comment
lines per line of code) and/or in a navatiext.

Display the results déctively. You may lilke gaphs, or you may lk clumns
of numbers, bt you need to find the mostf@ftive slection of results or combina-
tions of results to displayThis does not mean you need to leang three-dimen-
sional plotting techniquesThere is a good book byfte, calledThe Wsual Display
of Quantitative Informatioywhich is \ery informatve.

WORK WE WILL PERFORM IN THE COURSE, AND METHOD OF GRADING

This is the first time | ha taught this course, which presents an unusual blend of
lectures, group discussions, math, and computer uslageopose the follaing
scheme, bt we may modify it if we all agree to amecheme.
| will lecture on a ariety of topics, to pnade a background in biological concepts
and in the mathFor each topic, each of you will then look through some of the pri-
mary research literature, which is mostly in journ&ost often, you will try a liter
ature search on a database, such as Science Citationomégricola on-line. We
will meet to find out what specific topics under the broader topic are most interesting
(say an aticle on blood-flav control in tuna, under the broader topic of animal
physiology). Oneperson (or perhaps twpeople) will volunteer to (a) lead a group
discussion of the paper and (bjesfa conceptual model that condensesxterels
the ideas of the papewhich the group will then wrk out to the stage of a mathe-
matical model. The person(s) who did the original presentation will thestogea
computer model and solution, in consultation with me and witforaa else who
wishes to contribte; this vork will be done out of class, typicallyy the end of the
semestereveryone will have wlunteered to lead such arfaet at least once.Your
grade will be assigned based on:
(1) Your efort in leading a discussion and modelling session (50%)is will
include:

(a) The dlectiveness of your discussion: did youeiaequate depth, with
good oganization, and with reasonable accyrat presenting the ideas? (25%)

(b) The computer model: did youvgi good conceptual input to the model
development? © the etent of your ability with math and computing, did you
contribute well to completing the math and computingettgoment? (25%)

(2) Your participation in class discussions andelfging the concepts of models
that others are presenting. (50%) The criteria are as in part (1).

The usual diligence in a graduate course will get you a high grade, as in other graduate
courses. Thigourse is neel, and it should be fun and stimulating, with a realistic
level of effort on your part.



SOME O'HER MECHANICS OF THE COURSE

Office hous: With all of our research schedules being aned, we should arrange
office hours once we all ceene in class.Hours during tw &ternoons a week are
likely.

AttendanceOf course, attendingvery class is desirable, for your contition to the
class and my ability to grade your performantfeiou have © miss a class, please tell
me in adance or as soon as practicslle an work out an alternate way for you to
malke your contrilution to the classark.

Sdedule of topicsWe will develop this in class, to meet the needs of all the people
in the class.We will balance topics of immediate interest and applicability with the
breadth of topics that you shouldig familiarity with.

Mutual help: Each of you will be good at particular topics in biolpgyth, and
computing. Somef you might be willing to help your classmates on particular topics.
For those of you who wish to bevalable, | will circulate your names and contact
information, with a list of topics on which you are willing to be consultédis is
purely luntary; if you dort want to do it, it voen't adversely aflect your grade Also,
if the bhurden gets to be more than yoan;, we can easily inform people that you will
have © limit your avallability.

COMPUTING SKILLS AND ACCESS

Each of you can, and should, get a free-of-ghasomputer account from the cam-
pus computing @anization, ICT | will find out hav the system wrks this year If
you choose to use the UNIX systems, including mw enachine, wmbat, | can gie
you tutorials on basic commands (the shell) and on compi¥érs.can also do much
of the work on your avn PC or Mac.Many problems can be programmed in Excel or
the OpenCice equvalent, hut eventually you will find this to be limiting.There are
free or cheap compilers for C, C++, and (with more diggingptr&n.

It would be nice if you hadxperience in a programming language, suchatdn,
BASIC, Rascal, C, C++, Stella, CSMBella, COBOL, etc.If you have rone, we will
work through it; | can teach you to do simple programs and help you to wger lar
ones, and this @an’t affect your grade; your willingness to learn is what counts.

TEXTS

No single ta&t provides a good introduction to the scope of biological modelling.
Some books that title themsebds/such actually ka anly a limited repertoire of tech-
niques, such as stock-andwilonodels, vs., saydifferential equations, linear algebra,
root-finding, etc. We will thus refer to a number of books and to the original research



literature. Amonghe books you may find helpful are the fallng (where * indicates

a more general book; the others can be hard to read without a good background in the

field). This is a long list] don’t expect you to readven a nodest fraction of thesdt

is also an old list, from 19970nly one potent modelling book has come to my atten-

tion since, Gershenfell’ The Natue d Mathematical Modelling (Cambridge,
1999)...lut it assumes a heady mathematical backgrowke.mght refer to it for the
techniques, which we can then search for background infoven (ikipedia works

for mary cases, as does the sosmath.com (once yow lwioch math techniques you

want to use!). The list is just here for your guidance if yoant to pursue a topid.
haven’t put these books on resetvas there are too mato resene for a relatvely
small class.l don’t anticipate that yodl have any problems getting the book youant.

If you hare problems and the library camelp, please let me kag | may be able to

get the book or | may ka it myself.

In plant plysiology and ecology:

* Gaylon S.Campbell. 1977. An Introduction to Emironmental BiophysicSpringer
New York ff. vii+159 pp. ISBN 0-387-90228-7 fPER). Librarycall no. QH505
C34

* Thomas JGivnish (ed.). 19860n the Economy of PlanbFm and FunctionCam-
bridge U. Press. xvii+717 pp. ISBN 0-521-26296-8 {leha opy, library doesn)

* Vincent P Gutschick. 1987. A Functional Biolgy of Cop Plants. Croom Helm,
London and Sydne x+230 pp. ISBN 0-7099-3819-A.ibrary call no. SB91 G87
1987

* lan R.Johnson and John H. MThornley. 1990. Plant and Cop Modelling: A
Mathematical Apprach to Plant and Cop Physiolgy. Clarendon Press, Oxford.
Library call no. QK711.2 T483 1990aveen)

* Park S.Nobel. 1991. Physicobemcial and Evironmental Plant Physiolsy. Aca-
demic, San Digo. xx + 635 pp. ISBN 0-12-520021-&.ibrary call no. QK711.2
N623 1991

In animal plysiology and ecology:

* PeterCalow (ed.). 1987 Evolutionary Physiolgical Ecolay. Cambridge U. Press.

ix+239 pp. ISBN 0-521-32058-9.ibrary call no. QH541 E87 1987
In biomechanics (mostly animal):

Susan JHall. 1991. Basic Biomelanics Mosby Year Book, St. Louis. Library call

no. QP303 H35 1991
In cellular plysiology:

Wilfred D. Stein. 1986. Transport and Difusion acoss Cell Memlanes. Academic
Press, San Dgo ff. xvii+685 pp. ISBN 0-12-664661-9 APPER). Librarycall no.
QH509 S74 1986

* Wilfred D. Stein. 1990. Channels, Carries, and Pumps: An Irdduction to Mem-
brane Tanport Academic, San Dgo. Library call no. QH509 S73 1990

In genetics:

* Bruce Wallace. 1981. Basic Ppulation Genetics Columbia Unversity Press, N&

York. xii + 688 pp. Library call no. QH455 W34
In math, generally:



* Edward Batschelet. 1979. Introduction to Mathematics for Life ScientisBpringet
Berlin. xv + 643 pp.Library call no. QH323.5 B37 1979b
* L eah Edelstein-Keshet. 1988. Mathematical Models in Biogy. Random House,
New York. xvi + 583 pp. ISBN 0-394-35507-5 (Michael Cain has aop
Frank C.Hoppensteadt and Charles SPeskin. 1992. Mathematics in Medicine and
the Life SciencesSpringer New york. xii + 252 pp. ISBN 0-387-97659-6 (Ste
Warburton has a cop
JonMathews and R. L. Walker. 1970. Mathematical Methods of Physj@&nd Ed. W
A. Benjamin, N&v York. xiii + 501 pp. Library call no. QA401 M42 1970
Sol I. Rubinow. 1975. Introduction to Mathematical BiologyViley, New York. xiii +
386 pp. Library call no. QH323.5 R8
Douglass JWilde. 1964.Optimum Seeking Method2rentice-Hall, Engleood Cliffs,
NJ. xii+202 pp. LC 63-20039 (I ke a opy, library doesn)
In game theory:
* Karl Sigmund. 1993. Games of Life: Explations in Ecolgy, Evolut9ion, and
BehaviourOxford Unversity Press, OxfordLibrary call no. QH313 S585 1993
In stochastic modelling:
Roe Goodman. 1988. Introduction to Stdrastic Models Benjamin/Cummings,
Menlo Rark, CA. Library call no. QA273 G655 1988
In chaos theory:
* Friedrich Cramer. 1993. Chaos and Order: The Comp®ructure of Lving Sys-
tems. Wenheim, Nev York. Library call no. Q172.5 C45 C713 1993
James BGleick. 1987. Chaos: Making a N& Sience Viking, New York. Library
call no. Q172.5 C45 G54 1987
In self-oganizing systems in biology:
Stuart B.Kauffman. 1993. The Origins of Qder: Self Oganization and Selection in
Evolution Oxford University Press, N& York. Librarycall no. QH325 K39 1993
See also Hoppensteadt and Peskinyabo
In inverse modelling:
Dilip N. Ghosh Roy. 1991. Methods of Iaerse Poblems in PhysicSCRC Press, Boca
Raton, FL. Library call no. QC20.7 D5 G48 1991
In control theory:
Tom Milhorn. 1970?.The Application of Contd Theory to Physiolgical Systems.
Saunders, PhiladelphigStere Warkurton has a cop
Douglas S.Riggs. 1970. Control Theory and k&iological Feedback Mechanisms.
Williams and Wkins, Baltimore. Library call no. QH508 R5
In computing and in display of results:
* Merlin L. James. 1985. Applied Numerical Methods for Digital Computation.
Harper & Rav, New York. Librarycall no. QA297 J3 1983-r CSMP languge)
* Michael Metcalf. 1985. Effective frtran 77. Clarendon Press, Oxford. ISBN
0-19-853709-3 (I hae a opy, library doesrt)
* Robert J.Traister. Programming in C. Prentice-Hall, Engteod Cliffs, NJ. ISBN
0-13-729641-X (I hee a opy, library doesn)
* E. R. Tufte. 1983. The \sual Display of Quantitative InformationGraphics Press,



Cheshire, CT197pp. (no ISBN #)Library call no. QA90 T84 1983



