Mental math while biking: How big is that cloud, and how high is it?
This is a fun exercise that you can try; it takes some practice.
I was riding my bike on a day with scattered clouds moving across the sky. After several clouds had passed over me, essentially moving directly opposite my track, I realized that I had a quick measure of their size. Of course, I couldn't see their entire shadow on the flattish landscape, but I could see how fast they were moving and how long it took their shadow to pass. To get their speed, or, let's say velocity, since I also knew the direction, I looked at how long the shadow took to pass between two markers whose separation I could estimate easily. I counted the seconds, then measured the distance from the revolutions of my bike pedals, which I knew drove me 4 meters each revolution in the gear I was in. Then I simply divided the distance by the time, to get $\mathrm{v}=\mathrm{d} / \mathrm{t}$. There are a few mental tricks to long division without a calculator, mostly using successive approximation. I don't recall the exact numbers, but let's say it took 17 seconds for the shadow to cover 100 meters. Then the velocity was about 6 meters per second opposite my direction. I could fine-tune this to $5.9 \mathrm{~m} / \mathrm{s}$, knowing that $6^{* 17}$ is 102 , not 100 , or 2% high.

Of course, it's hard to keep two counts for time in one's head, so I could only estimate the size of the next cloud passing over, assuming the clouds are all moving together. I stopped riding when the next cloud came over, to get its own velocity, not the algebraic sum of its velocity and mine. Let's say it took 85 seconds. I multiplied this by 6 to get a lateral length of 510 meters - make that 500 , subtracting the 2% overestimate of velocity.

Now, how high is it? Clouds can form at many heights above the terrain, and their shape is not a good indicator. What is useful information is how much of an angle a cloud subtends in one's view. Estimates are a bit iffy, of course; we don't usually train ourselves to measure angles by eye. Having done a lot of photography with lenses of different focal lengths gave me an edge. A "standard lens" for a true 35 mm camera has a focal length of 50 mm and a field of view that's about 40 degrees, or 20 degrees to each side of the center. So, I have a feeling for, especially, an angle of 30 degrees, for which the sine is 0.5 , meaning that an object subtending 30 degrees in my view is half as wide as it is high. The cloud I viewed looked like it was about $1 / 4$ that width - I mentally laid out about 4 copies of it to reach the 30 degrees with which I was familiar. That made the sine of its angle close to $1 / 4$ of the sine of 30 degrees (the sine function is pretty linear for small angles). That made the cloud's height above terrain 4 times $2=8$ times higher than its width, or about 4,000 meters. That's a respectable height for the base of a cloud. Of course, there are corrections if the cloud is viewed significantly off vertical.

The calculations gave me some good mental exercise and a little more insight into what was going on in nature around me.

