A study in predatory lending, using calculus

At our home we received a flier today, 6 April 2017, from Buddy's home Furnishings. It was largely in Spanish, clearly targeting Hispanics and touting that the buyer need not have a credit rating. Red flags!

Each item, such as a big TV, had its weekly or monthly payment rate and the duration of payments. By law, I guess, the flier also had to specify the cost for buying it outright...and that was typically half the cost on the installment plan that might be 2 years or even as short as 1.25 years (65 weeks)! That's a whopping interest rate, on the order of 100%.

We can get a good estimate of the interest rate, r, changing from a discrete set of payments (with a somewhat clumsy series sum) to a continuous payment rate, creating a differential equation that's rather readily solved.

In the general case, we have
$\mathrm{P}_{0}=$ the principal of the loan (the one-time purchase price)
$C^{\prime}=$ the payment rate (dollars per week or month, or, better, per year to get the annual rate)
$t=$ the duration of payments on a stated plan, commonly 1.25 or 2 years
We have to find the interest rate, r

If the payment rate is high enough, the principal declines, eventually to zero. In any one payment in a time Δt, the principal increases by an amount $\operatorname{Pr} \Delta t$ but decreases by the amount $C^{\prime} \Delta t$. Then we have
$\Delta P=r P \Delta t-C^{\prime} \Delta t$
Taking the limit of small $\Delta \mathrm{t}$, we get a differential equation

$$
\frac{d P}{d t}=r P-C^{\prime}
$$

We can solve it in steps. First, the homogeneous equation, $\mathrm{dP} / \mathrm{dt}=\mathrm{rP}$, has the simple solution

$$
P=P_{0} e^{r t}
$$

The inhomogeneous equation has the solution

$$
P=P_{0} e^{r t}-C^{\prime} \int_{0}^{t} d t^{\prime} e^{r\left(t-t^{\prime}\right)}
$$

You can verify this by differentiating it with respect to t.

We can integrate this to a closed form

$$
\begin{aligned}
P & =P_{0} e^{r t}-C^{\prime} e^{r t} \int_{0}^{t} d t^{\prime} e^{-r t^{\prime}} \\
& =P_{0} e^{r t}-\left.C^{\prime} e^{r t} \frac{e^{-r t^{\prime}}}{-r}\right|_{0} ^{t} \\
& =P_{0} e^{r t}+\frac{C^{\prime}}{r} e^{r t}\left[e^{-r t}-1\right] \\
& =e^{r t}\left[P_{0}-\frac{C^{\prime}}{r}\left(1-e^{-r t}\right)\right]
\end{aligned}
$$

We have to solve for the term in brackets reaching zero. Let's divide out P_{0} :

$$
1=\frac{C^{\prime} / P 0}{r}\left[1-e^{-r t}\right]
$$

Now consider the example of a big TV, with a full price $P_{0}=\$ 1560$, a term of 2 years, and a weekly payment of $\$ 30$ or a payment rate per year of $\$ 1560 \ldots$ of course, the total payments are then twice the one-time purchase price! We have $\mathrm{C}^{\prime}=\mathrm{P}_{0}$ or $\mathrm{C}^{\prime} / \mathrm{P}_{0}=1$. The specific equation to solve is then

$$
1=\frac{1}{r}\left[1-e^{-2 r}\right]
$$

It's simple enough but nonlinear. Let's try two ways to solve it numerically:
(1) Iterated guesses. The interest rate is not quite 100% per year. I chose an initial guess of $0.60=60 \%$: With $r=0.60$:

$$
1=? \frac{1}{0.6}\left[1-e^{-1.2}\right]=1.168 \text { Not yet close enough }
$$

(I couldn't get the question mark above the equals sign)
Try r $=0.65$

$$
1=? \frac{1}{0.65}\left[1-e^{-1.3}\right]=1.119 \text { Take a bigger step now }
$$

Try r=0.75

$$
1=? \frac{1}{0.75}\left[1-e^{-1.5}\right]=1.036 \text { Getting close }
$$

Try r=0.80

$$
1=? \frac{1}{1.6}\left[1-e^{-1.6}\right]=0.998 \text { Close enough }
$$

That's 80\% per year, compounded!
Why would anyone take that rate, when even usurious credit card rates are about 27% (and they are usurious because South Dakota refuses to pass a usury law, so that they can get the credit card business)? Easy: the prospective buyers have no credit rating, so this is the only way they can buy a gibticket item. What's more, they will be caught in a cycle, which can get worse if they miss a payment and get a big penalty. The only thing in defense of the lenders is that there is probably a significant rate of loss, being unable to repossess the item in good shape.

(2) Using calculus twice

We're trying to find the root of the equation

$$
F(r)=1-\frac{1}{r}[1-e-2 r]
$$

We make a guess, calling it $r=r_{0}$. We evaluate $F\left(r_{0}\right)$. Then, we assume that the function $F(r)$ is nearly linear near $r=r_{0}$, so that at another nearby value r_{1}, we have

$$
F\left(r_{1}\right) \approx F\left(r_{0}\right)+F^{\prime}\left(r_{0}\right)\left(r_{1}-r_{0}\right)
$$

Here, F^{\prime} is the derivative of F with respect to r. Setting $F\left(r_{1}\right)=0$, as we hope, we get

$$
r_{1}=r_{0}-\frac{F\left(r_{0}\right)}{F^{\prime}\left(r_{0}\right)}
$$

Nice and simple. This is Newton's rule (the Newton).
In our current specific case, we can readily calculate the derivative:

$$
\begin{aligned}
F^{\prime}(r) & =+\frac{1}{r^{2}}\left[1-e^{-2 r}\right]-\frac{1}{r} 2 e^{-2 r} \\
& =\frac{1}{r^{2}}-\left(\frac{1}{r^{2}}+\frac{2}{r}\right) e^{-2 r}
\end{aligned}
$$

Let's start with the same guess as before, $r=0.6$:

$$
\begin{aligned}
& F\left(r_{0}\right)= 1-1.168=-0.168 \\
& \begin{aligned}
F^{\prime}(r 0) & =\frac{1}{0.6^{2}}-\left(\frac{1}{0.6^{2}}+\frac{2}{0.6}\right) e^{-1.2} \\
& =0.937 \\
\rightarrow r_{1}= & 0.6-\frac{-0.168}{0.937} \\
= & 0.779 \\
F(r 1)= & 1-1.013 \quad \text { (Work not shown - easy to do }) \\
& =-0.013 \quad \text { Getting close fast }
\end{aligned}
\end{aligned}
$$

A second iteration gives us

$$
\begin{aligned}
F^{\prime}\left(r_{1}\right) & =\frac{1}{0.779^{2}}-\left(\frac{1}{0.779^{2}}+\frac{2}{0.779}\right) e^{-1.558} \\
& =0.760 \\
\rightarrow r_{2}= & 0.779-\frac{-0.013}{0.760} \\
& =0.796 \\
F\left(r_{2}\right) & =1-1.001=-0.001 \text { Close enough }!
\end{aligned}
$$

Being on a roll, let's try a $2^{\text {nd }}$ case, a furniture set. The one-time purchase price is $\mathrm{P}_{0}=\$ 553$. The weekly payment, in one plan, is $\$ 17$, and the term is 65 weeks or 1.25 years, for a total price of $\$ 1105=$ $2 \mathrm{P}_{0}$... and this on a shorter loan period, so the interest rate is notably higher than 80%. Let's see how high.

We have $C^{\prime} / P_{0}=\left(2 P_{0} / 1.25\right) / P_{0}=1.6$, and $t=1.25$ in years. The equation is then

$$
\begin{aligned}
& F(r)=\frac{1.6}{r}\left[1-e^{-1.25 r}\right] \\
& \quad \text { and } \\
& F^{\prime}(r)=\frac{1.6}{r^{2}}-\left(\frac{1.6}{r^{2}}+\frac{2}{r}\right) e^{-1.25 r}
\end{aligned}
$$

Without showing the details of the calculations:
First guess:

$$
\begin{array}{ll}
& r_{0}=1.000(100 \% \text { interest }) \\
& F\left(r_{0}\right)=-0.142, F^{\prime}\left(r_{0}\right)=0.569 \\
\rightarrow & r_{1}=1.250 \\
\rightarrow & r_{2}=1.275 \\
& \quad F\left(r_{1}\right)=-0.012, F^{\prime}\left(r_{1}\right)=0.474 \\
& \\
\hline
\end{array}
$$

So, this is 127.5% interest!

