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The method of sling psychrometry is to make the boundary layer conductance at the two ther-
mometer bulbs to be so large that only two terms matter in the energy balance: evaporative cool-
ing, QE, and convective heat transfer, QC. At steady state, the sum of these two terms is zero,
which we may write as

(1)0 = −
λgb

P
[es(Twet) − ea] − gbCP(Twet − Tair]

Here I use the notation es(Twet) for saturated vapor pressure as a function of Twet. I also set up
the notations here:

λ = molar heat of vaporization of water (about 44,000 J mol−1)
gb = boundary-layer conductance, in molar units, as commonly used in plant

physiology (mol m−2s−1)
P = total air pressure
es(Twet) = saturated vapor pressure of water (Pa) at the wet-bulb temperature
Twet = wet-bulb temperature
ea = partial pressure of water vapor in ambient air
CP = molar heat capacity of air (about 29 J mol−1)

We can factor out gb and rearrange Eq. (1) to

(2)Tair − Twet =
λ

PCP
[es(Twet) − ea]

For a first approximation of how the wet-bulb temperature is related to the environmental condi-
tions, we can express es(Twet) using a linear variation of saturating vapor pressure with tempera-
ture:

(3)es(Twet) = es(Tair) + e′ ⋅ [Twet − Tair]

This uses the fact that the value of any smoothly-varying function, f(x), at a new point, x’,can be
approximated as its value at any the original point, x, plus its derivative, df/dx, multiplied by the
offset, x’-x. In the current case, e’ is clearly the derivative, We can use a quadratic form for
higher accuracy, but the principle remains the same.

The numerical value of the derivative, e’ = des(T)/dT, can be looked up in a table. It can
also be calculated from a highly accurate mathematical formula from the Smithsonian Tables,

(4)es(T) = 610. 8 Pa exp[
17. 269 T

237. 2 + T
]

The analytical form of the derivative, derived using some calculus and algebra, is simply



(5)e′(T) = es(T)
4098

(T + 237. 2)2

These equations work very well for temperatures above freezing. There are similar forms for
temperatures below freezing. For T = 20 (all T values here are in degrees Celsius), we can see
that e’ = 0.062 es(T) - that is, vapor pressure rises about 6.2% per degree Celsius rise in tempera-
ture. To complete the calculation at this temperature, we can plug T = 20 into Eq. (4) to get
es(20) = 2339 Pa and e’ = 145 Pa per K (K = Kelvin, same scale as Celsius). We can do the same
thing for an example, T = 30, that we’ll use later, below, to get es(30) = 4246 Pa and e’ = 244
Pa/K.

Substituting Eq. (3) into Eq. (2), we obtain

(6)Tair − Twet =
λ

PCP
[es(Tair) − ea − e′ ⋅ (Tair − Twet)]

We can write ea as the the saturated vapor pressure at ambient temperature, multiplied by the rel-
ative humidity as a fraction, hr. This makes the first two terms in brackets on the right become
es(Tair) ⋅ (1 − hr). Then we can bring all the terms in temperature to the left-hand side, to obtain

(7)[Tair − Twet][1 +
λe′
PCP

] =
λ

PCP
es(Tair) [1 − hr]

The factor on the right-hand side after λ /(PCP) is just the vapor-pressure deficit, D. I write rela-
tive humidity, hr, as a fraction (e.g., 40% = 0.4, literally). Clearly, we can solve for the tempera-
ture difference as

(8)
Tair − Twet =

λD

PCP[1 +
λe′
PCP

]

Here is a numerical example:
Tair = 30°C → es(Tair) = 4246 Pa, e’ = 244 Pa K−1

hr = 0. 5 → ea = 2123 Pa
P = 105 Pa
λ , CP as above.

Substituting these numerical values into Eq. (5) yields Tair − Twet = 6.85°C. [Note: this is
slightly different from a presentation made in 2001, in which the value of e’ was not done as
accurately.]

This value is not quite accurate, since we used a linear approximation for the change in
es(T) with a change in temperature. The vapor pressure behaves as the more upwardly curved
exponential form in Eq. (4). Of course, we can’t get a simple (that is, analytical) solution to Eq.
(2), which is then a transcendental (nonpolynomial) equation. We can, however, iterate the solu-
tion:

Let’s call the solution we got above the lowest approximation to the true value of Twet, or
T0

wet. The next and better solution we’ll call T1
wet and write it as T0

wet + dT, where dT is a correc-
tion that should be small. We insert this into Eq. (2) and get



(9)Tair − Twet − dT =
λ

PCP
[es(T

0
wet + dT) − ea]

=
λ

PCP
[es(T

0
wet) + e′(T0

wet) ⋅ dT − ea]

Here we have used the linear approximation again, but it should be better, because we are closer
to the true value of Twet, and all smooth functions look linear over short ranges.

We can gather all the terms in dT on one side, to get

(10)Tair − T0
wet −

λ
PCP

[es(T
0
wet) − ea] = dT ⋅ [1 +

λe′(T0
wet)

PCP
]

It’s easy to solve this for dT. Using the values from the first approximation, we get dT = -1.10,
so that our new estimate for Twet is 23.15 - 1.10 = 22.05°C. Doing one more round of approxi-
mation gives us a further correction of -0.03°C, or an estimate of Twet as 22.02°C. We can check
that this is good by plugging it into Eq. (2) again, getting

(11)30 − 22. 02 =
44, 000

29x105
[2648 − ea]

The factor in brackets then has to be 526 Pa, and ea is shown to be 2648 - 526 = 2122 Pa, very
close to the exact value of 2123 Pa.

The real value of Twet in our test case is then 22.02°C. We would compute the proper value
of ea, if we used the accurate formula in Eq. (4) for es(Twet), and we would get the proper value
of relative humidity, 0.5 or 50%.

If we were interested in the dew-point temperature, Tdew, we could compute it (or make a
table to do this), using the relation that the air at this temperature has a saturated vapor pressure
equal to ea:

(12)es(Tdew) = hres(Tair) = ea

While the saturated vapor pressure has that seemingly difficult exponential form, we can actually
solve for Tdew readily:

(13)610. 8 exp[
17. 269 Tdew

(237. 2 + Tdew)
=

ea

610. 8

Taking logarithms of both sides, we get

(14)
17. 269 Tdew

(237. 2 + Tdew)
= ln(ea/610. 8)

Multiply through by the denominator on the left, 237.2 + Tdew, and call the right-hand side sim-
ply L, to get

(15)17. 269 Tdew = (237. 2 + Tdew) L

or



(16)[17. 269 − L] Tdew = 237. 2 L

In the case above, we readily obtain L = 1.246 and [17.269 - 1.246]Tdew = 237.2*1.246, or Tdew =
18.45°C. This is below the wet-bulb temperature, as it must be.

I’m sure there are derivations of these relations in texts, but none that I can find at hand.
The principles are the same in any derivation.

There are some other approximations here, such as assuming that the heat of vaporization of
water is constant, independent of temperature. By the laws of thermodynamics, it does vary
slightly. The change in our calculation if we account for this is small - in fact, smaller than the
real offset of wet-bulb temperature that arises because twirling the psychrometer does not give us
an infinite conductance in the boundary layer. If we really want extreme accuracy in measuring
humidity or dew-point, there are other technologies (all of them more expensive, of course).


